Ремонт насоса гном

Как прозвонить проверить скважинный глубинный насос, погружной центробежный двигатель проверка

Услуги
Бурение скважин на воду
Ремонт скважин на воду
Увеличение дебита
Монтаж скважинных насосов
Обустройство скважины
Скважинный адаптер
Лицензирование на недропользование
Проектирование
Сервисное обслуживание
Поисково-разведочное бурение
Промывка водозаборных скважин
Аренда дренажного насоса в СПб
Информация
Цены на бурение
Водоснабжение загородного дома
Оборудование для геологических работ
Консервация водозаборных скважин
Технология бурения скважин
Бурение скважин водоснабжения
Насос, который не работал
Частотный преобразователь
Реле давления для насоса
Скважинный оголовок
Мембранный гидроаккумулятор для систем водоснабжения.
Подбор скважинного насоса
Возможен оперативный выезд для диагностики, ревизии неисправностей скважинного глубинного погружного оборудования для скважины. Телефон для связи без выходных 969-85-45 с 10 до 22. Все оборудование для восстановления работы скважины есть у нас на складе.

Как показывает статистика, в поломках насоса в большинстве случаев виноват электродвигатель. Обычно он выходит из строя из-за перегрева. Нарушается изоляция его обмотки и происходит либо межвитковое замыкание, либо замыкание на корпус.

Для того, чтобы точно выяснить причину неисправности, насос следует из скважины извлечь. Косвенным признаком неисправности именно электродвигателя может служить факт срабатывания защиты по причине утечек тока. Разумеется, при наличии автомата УЗО.

После извлечения насоса, его необходимо разобрать, для получения доступа к электродвигателю. Для этого необходимо выкрутить болты соединительной муфты и отсоединить насосную часть. Затем извлечь сальник. Кстати, из-за его негерметичности также возможно КЗ в электродвигателе. Поэтому при малейших сомнениях, эту деталь следует заменить.

Далее необходимо вытащить шпильки и отсоединить верхний фланец электродвигателя. После чего извлечь ротор. Теперь можно приступить непосредственно к прозванию.

Прозвание электродвигателя

Прозвание трехфазного двигателя

В этом двигателе прозваниваются статорные обмотки (для обнаружения обрыва в роторе (которые случаются очень редко) необходимо специальное оборудование). Омметром меряется сопротивление между клеммами фаз. Все три показания должны быть одинаковы. Разница свидетельствует о межвитковом замыкании.

Прозвание однофазного конденсаторного двигателя

Также проверяются только статорные обмотки. Здесь их две – рабочая и пусковая. Сопротивления у них разные! И у первой оно всегда меньше. Но сопротивление от общего вывода должно соответствовать сумме сопротивлений этих обмоток.

В заключение хотим сказать, что не все электродвигатели скважинных насосов позволяют перемотку. Мы производим диагностику, проверку скважинных погружных глубинных насосов, прозвонить, проверить центробежный водяной насос и всю систему водоснабжения от скважины мы можем без выходных.

Причины и способы устранения поломок насосов различных видов

Насосное оборудование способно решить многие проблемы, возникающие при обустройстве частного дома. При помощи таких аппаратов обеспечивают водоснабжение дома, осуществляют водоотведение, повышают давление в уже имеющихся линиях подачи воды. Не менее важную роль играет электронасос в промышленности, где с его помощью транспортируются большие объемы материалов.

Но, каким бы качественным и функциональным ни был агрегат, при неправильной эксплуатации он быстро приходит в негодность. И если денег на квалифицированную помощь нет, придется производить ремонт насосов своими руками.

1 Типы насосной техники

Неправильная работа насосного устройства или полное прекращение его функционирования являются следствием выхода из строя отдельных узлов аппарата. При этом ремонт насоса будет заключаться в замене неработающих комплектующих. Сложность такого действия заключается в том, что современный рынок располагает большим разнообразием насосной техники и каждое устройство предполагает индивидуальную конструкцию. Поэтому и ремонт аппарата полностью зависит от типа прибора.

Виды насосного оборудования

К основным типам бытовой насосной техники относятся:

  • скважинный насос для воды;
  • водяной дренажный агрегат;
  • насосные станции на основе поверхностных электронасосов.

Среди промышленных агрегатов без специальных навыков отремонтировать самостоятельно можно только 2 типа устройств:

  • водокольцевой аппарат ВВН;
  • буровой насос.

к меню ↑

2 Ремонт насосного оборудования

В соответствии с каждым типом аппарата выделяются отдельные алгоритмы ремонтных работ. В целом же следует помнить, что если повреждениям поддался двигательный блок аппарата, а навыков работы с обмоткой и контактными группами не имеется, лучше отдать устройство в сервис. Также перед началом ремонтных робот или обслуживания насосный агрегат отключается от электрической сети и извлекается из источника.
к меню ↑

2.1 Особенности ремонта скважинных аппаратов

Независимо от типа, водяной насос для скважины имеет цилиндрический удлиненный корпус из стали или чугуна. Трубопровод на нем фиксируется в верхней части. При этом двигатель может располагаться, как сверху, так и в нижней части агрегата. Данный тип электронасосов рассчитан на забор жидкости с большой глубины. Часто при высоком уровне абразивных веществ в воде. Поэтому следует помнить, что намного проще предотвратить поломку периодическими чистками и проверками аппарата.

Если же все-таки неисправности в работе возникли, начало любых работ заключается в правильной диагностике проблемы. При этом, если даже возникают мысли о том, что именно сломано, следует тщательно осмотреть все устройство на наличие проблем второстепенных.

Чистка скважинного насоса

Прежде всего, для скважинных водяных насосов необходимо проверить, не стала ли причиной прекращения работы перегрузка. Проводится это в два этапа:

  1. Разбирается распределительная коробка. Для этого сначала ослабляются винты на корпусе. Дальше отделяется рабочая камера. И уже после этого снимается крышка с моторного отсека.
  2. Дальше идет проверка всех узлов, включая обмотку двигателя и предохранители, на наличие следов горения и соответствующего запаха. Если повреждена обмотка, ее придется менять на аналогичную.

Также не лишним во время предварительного осмотра будет исследовать кабель аппарата на наличие повреждения. Особенно тщательно осматриваются контакты на месте соединения с мотором. В случае обнаружения повреждения, необходимо заменить или весь кабель, или поврежденный участок, тщательно заизолировав место соединения.

Одной из частых проблем скважинных аппаратов является поломка, когда напор либо ослабевает, либо устройство работает, а вода не идет вообще. Это является следствием работы в скважинах с высоким содержанием песка. В этом случае причины может быть три:

  1. Вышел из строя рабочий клапан. В этом случае помимо того, что вода не проходит возможен также и гидроудар, который повреждает узлы.
  2. Забился фильтр на впускных отверстиях. Если прибор расположен близко к дну, через всасывающие отверстия может проходить большое количество абразивов, которые постепенно забивают канал.
  3. Повреждена или деформирована крыльчатка рабочего колеса. При этом можно попытаться выровнять лопасти, а на впуск поставить более качественный фильтр.

Если же при осмотре выявлены повреждения электромагнита, то в этом случае водяные насосы ремонту своими руками не подлежат. Их починить и отрегулировать смогут только в мастерской.
к меню ↑

2.2 Ремонт дренажных устройств

Дренажные насосные аппараты используются для осушения водоемов с грязной водой, а также водоотведения из подтопленных помещений. Такие устройства выполняются из пластика, стали или чугуна (промышленные варианты). Как правило, устанавливаются на дно источника на специальные подставки в вертикальном положении. Отличаются высокой пропускной способностью.

Такие аппараты рассчитаны на работу в сложных условиях, где нагрузка на рабочие узлы достаточно велика. Поэтому и неисправности – не редкость. Есть 2 основных признака неправильной работы устройства: полное отсутствие действий со стороны аппарата или слышен гул двигателя, но нет напора.

Как снять рабочее колесо с дренажного насоса

В первом случае причины могут быть следующие:

  • вследствие резких и частых скачков напряжения сгорел конденсатор на электродвигателе;
  • поплавковый механизм в узком колоде зацепился об одну из стенок, находясь, при этом, в положении ниже крайней точки включения;
  • при перепадах напряжения сгорела обмотка;
  • твердыми включениями забило лопасти рабочего колеса.

Если же устройство гудит, но не выполняет работу, причина может заключаться в следующих моментах:

  • перетерся или перегорел один из участков кабеля питания;
  • расшатался или полностью обломался шток внутри аппарата;
  • поврежден обратный клапан, вследствие чего вода не проходит в рабочую камеру и дальше в водопровод.

Конечно же, данный список далеко не полон, но более сложные проблемы возможно выявить только в сервисных центрах при помощи соответствующего оборудования. К тому же, даже из перечисленных неисправностей без оборудования вряд удастся решить даже половину проблем.

Вполне возможно прочистить рабочее колесо. Для этого ослабляются крепления на корпусе, и снимается его крышка. Само колесо желательно не снимать, но если загрязнение слишком серьезное, сделать это нужно. Только предварительно нужно слить масло из резервуара, который расположен прямо за крыльчаткой. Дальше весь песок, камушки и грязь вычищаются, после чего механизм собирается назад.

Также вполне возможно поменяться самостоятельно кабель. Для того, чтобы найти поврежденный участок, помпа включается и пальцами пытаемся сдавить отрезки. Где электронасос заработает, там и разрыв. Если разрыв находится в области возле мотора, то аппарат придется разбирать. При этом придется раскрутить три фиксационных болта и шайбу. Дальше провод обрезается выше поврежденного участка, вставляется и снова фиксируется.

В отдельных моментах реально также заменить конденсатор. А вот что касается обмотки, обратного клапана или сломанного штока, здесь ремонт бытовых насосов не представляется возможным.

к меню ↑

2.3 Основные неисправности насосных станций

Такой насос для повышения давления воды используется для водоснабжения частных домов. В ходе неправильного монтажа или использования может возникнуть ряд неисправностей, которые могут повлиять на работу аппарата. Так, например, агрегат может работать, но вода в линию не поступает.

Причин может быть 2: поломка клапана, отсутствие жидкости в рабочей камере. Ремонт водяного насоса заключается в заполнении всего объема рабочей камеры жидкостью или же в замене обратного клапана. При этом обратный клапан на отдельные модели можно изготовить самому из резины. Для надежности еще желательно проверить все стыки трубопровода, так как они могут быть причиной падения давления в линии.

Ремонт крыльчатки насосной станции

Также одним из следствий поломки насосной станции может быть рывковая подача жидкости. Такое явления чаще всего встречается при повреждении гидробака. Особенности ремонта насосов в этом случае заключаются в проверке целостности мембраны. Если при нажатии на ниппель идет вода, необходимо заменить резиновую мембрану. Если есть видимые повреждения на аккумуляторе, их следует заделать при помощи герметика. Также желательно при помощи воздушного насоса подкачивать давление бака до величины в 1,8 бар.

Также включение станции может отсутствовать из-за поломки реле давления. В этом случае поможет полная замена блока.
к меню ↑

2.4 Ремонт насосной станции своими руками (видео)

к меню ↑

2.5 Как отремонтировать водокольцевой насос

Используются водокольцевые агрегаты ВВН для выкачки загрязненных газов и паров, их очистки и подачи в трубопровод или резервуар. В сравнении с бытовыми приборами, конструкция такого агрегата уже сложней, а значит сложней и ремонт водокольцевого насоса. И все же, определенные неисправности можно убрать самому:

  1. Недостаточный вакуум. Является следствие ослаблением креплений вала или повреждением сальникового уплотнения. Решается проблема более плотной фиксацией гаек или заменой испорченного сальника.
  2. Рывковая работа устройства или частые выключения. Такая проблема возникает, как правило, при низком уровне жидкости в рабочей камере. Именно благодаря жидкости осуществляется перекачивание газа. В этом случае необходимо дополнить запас через специальное отверстие.
  3. Производительность агрегата резко падает. В этом случае, скорее всего, забились узлы устройства грязью, пылью или мелким песком. В этом случае установка отключается. Вся вода сливается через соответствующую горловину. После этого устройство продувается сжатыми воздушными массами из баллона. Если процедура не помогла, аппарат разбирается и чистится вручную.

к меню ↑

2.6 Обслуживание буровых агрегатов

Есть несколько ситуаций, при которых самостоятельному ремонту буровые насосы все же подлежат:

  1. Агрегат работает, но не подает жидкость в линию. Причин этому 2. Либо не плотно соединены отрезки линии, либо установлена слишком большая высота всасывания. Решение – уменьшить расстояние от устройства до пласта жидкости, проверить все стыки линии на наличие протечек.

    Наладка бурового насоса

  2. Производительность упала ниже минимальной нормы. Здесь причиной может быть изношенный клапан, засорение линии или же повреждение рабочего поршня, при котором он пропускает жидкость. Необходимо осмотреть клапаны и поршень. Если неисправности не выявлено – следует разборка агрегата и прочистка всех узлов.
  3. Стуки и гул во время работы. В этом случае может быть ослаблен поршень на штоке, сломаны пружины на обратных клапанах или же втулки цилиндров износились. В случае с поршнем достаточно будет подтяжки винтов. Что касается втулки или пружины, то их придется заменить на новые.
  4. Подшипники вала слишком быстро нагреваются. В этом случае скорее всего засорены каналы маслоподачи. Или же изначально используется масло с примесями. Выход разобрать линию подачи масла. Прочистить каналы и основной картер. А также, при необходимости, заменить масло на более чистое.

При возникновении более серьезных отклонений в работе буровых аппаратов, или если, причина поломки неизвестна, категорически рекомендуется обратится к квалифицированному мастеру.

Конструктивные особенности насосов

В сельскохозяйственном водоснабжении широко применяются центробежные лопастные насосы, реже вихревые и центробежно-вихревые. Осевые насосы устанавливают только в технологических аппаратах и вентиляторах.

Центробежные насосы.

Центробежные консольные насосы типа К и КМ, показанные на рис. 1.10, используются для подачи воды из поверхностных источников и шахтных колодцев при высоте всасывания до 7 м. Они просты по устройству и удобны в эксплуатации. Насосы этого типа состоят из корпуса со всасывающим и нагнетательным патрубками, рабочего колеса, вала с подшипниками, муфты для соединения с электродвигателем или шкива для привода от двигателя внутреннего сгорания и пускорегулирующей аппаратуры. Насос перед пуском требует залива воды через отверстие в верхней части корпуса.

В насосах типа КМ в отличие от насосов типа К корпус крепится непосредственно к фланцу электродвигателя, а рабочее колесо устанавливается на удлиненном конце его вала.

Входящие в марку насоса буквы и цифры;, например, 2КМ-6, обозначают: 2 – уменьшенный в 25 раз диаметр входного патрубка, мм; К – консольный; М – моноблок-насос; 6 – коэффициент быстроходности, уменьшенный в 10 раз.

1 – рабочее колесо; 2 – сальниковые набивки; 3 – вал; 4 – сальник; 5 – шпонка; 6 – корпус; 7 – гайка; 8 – входной патрубок; 9 – нагнетательный патрубок

Рисунок 1.10 – Консольные насосы типа К (а) и КМ (б)

Из различных типов погружных центробежных насосов в животноводстве наиболее распространены насосы типов ЭЦВ и ЭПН. Указанные электронасосы используются в комплекте с насосной установкой для подъема воды из глубоких скважин неагрессивной воды с температурой не выше 298 К, содержание механических примесей в которой до 0,01 % по массе.

1 – головка; 2 – стяжка; 3 – клапан; 4 – ступица верхнего подшипника; 5 – рабочее колесо; 6 – направляющий аппарат; 7 – обойма; 8 – диск; 9 – вал; 10 – ступица основания; 11 – соединительная муфта

Рисунок 1.11 – Погружной насос типа ЭЦВ

Погружной насос представляет собой сочетание центробежного насоса и погружного электродвигателя. В насосах типа ЭЦВ валы связаны жесткой муфтой, а в насосах типа ЭПН двигатель и насос соединены опорным фланцем.

Погружной многоступенчатый насос типа ЭЦВ представлен на рисунке 1.11. Конструкция его электродвигателя предполагает эксплуатацию под водой. Марка насоса, например ЭЦВ6-10-140, расшифровывается так: Э – электропогружной; Ц – центробежный; В – высоконапорный; 6 – уменьшенный в 25 раз минимальный диаметр скважины, мм; 10 –подача, м3/ч; 140 – напор, м.

Объемные насосы. Лопастные вихревые насосы типа В и ВК предназначены для перекачки чистой воды из открытых водоемов и шахтных колодцев при высоте всасывания 5…7 м, Эти самовсасывающие насосы не требуют залива воды перед повторным запуском, достаточно залить ее в корпус насоса только перед первым пуском. Насосы этого типа применяются для подачи воды из неглубоких (до 8 м) шахтных колодцев и открытых источников. Принцип действия вихревого насоса можно уяснить из схемы, приведенной на рисунке 1.16. Кольцевая полость 1 в корпусе насоса соединяет всасывающий и нагнетательный патрубки. В этой полости жидкость вовлекается в круговое движение относительно ее осевой линии. Такое движение, как видно из рисунка 1.17, обусловлено своеобразным «трением», которое возникает в пространстве, образуемом в корпусе межлопаточными ячейками 8 рабочего колеса 3 и примыкающим к нему кольцевым каналом. Как показано в сечении А–А (см. рисунок 1.12, б), под действием центробежных сил по периферии колеса возникает интенсивное вихревое циркуляционное течение (отсюда и название вихревой насос). На него накладывается еще одно течение, вызванное давлением лопаток колеса на жидкость, т. е. перепадом давления на передней и задней сторонах лопаток. Обмен импульсами за счет вторичных течений столь интенсивный, что при равных размерах и частотах вращения вихревой насос создает напор в 3…5 раз больший, чем центробежный насос.

На рисунке 1.13 показано, что всасывающий патрубок имеет вертикальный участок. Это исключает вытекание воды при неработающем насосе. При повторном пуске воздух из всасывающей трубы удаляется самим насосом, в результате чего в ней создается разрежение, и вода из источника под действием атмосферного давления поступает в корпус насоса.

1 – кольцевая полость; 2 – колесо

Рисунок 1.14 – Разрез (а) ипринцип работы (б) вихревого насоса

В марке вихревых насосов буквы и цифры, например у насоса 2В-1,6 обозначают: 2 – уменьшенный в 25 раз диаметр входного патрубка, мм; В – вихревой; 1,6 – коэффициент быстроходности, уменьшенный в 10 раз, У насоса типа ВК, например ВК-1/16, символы обозначают: В – вихревой; К – консольный; 1 – подача, м3/ч; 16 – напор, уменьшенный в 10 раз.

1 – фланец; 2 – корпус; 3 – рабочее колесо; 4 – вал; 5 – всасывающий патрубок; 6 – нагнетательный патрубок; 7 – канал; 8 – межлопаточная ячейка

Рисунок 1.15 – Устройство вихревого насоса

Следует отметить вибрационные насосы (НЭБ, «Малыш», установки ВПУ-1), принцип работы которых основан на использовании инерционных сил, которые возникают под воздействием колебательных процессов в перекачиваемой жидкости, заключенной в трубопроводе. Электромагнитный вибрационный насос НЭБ-1/20, показанный на рисунке 1.16, относится к насосам плавающего типа и предназначен для подачи воды из шахтных колодцев с динамическим напором до 20 м. Он состоит из кожуха 9, соединенного болтами 6 с основанием 1. В образовавшейся камере помещены электромагнит и приводимый им в действие рабочий орган насоса – поршень 19.

В верхней части кожуха имеется напорный патрубок, к которому присоединен гибкий пластмассовый шланг 11 диаметром 20 мм, отводящий перекачиваемую воду от насоса. Насос, закрепленный в поплавке – понтоне 10, удерживается на воде в вертикальном положении и дополнительных креплений не требует. Подача насоса НЭБ-1/20 при подъеме воды с глубины 20 м достигает 1 м3/ч. Номинальная мощность 0,25 кВт.

Электромагнитный вибрационный насос «Малыш» по конструкции аналогичен насосу НЭБ-1/20. Он относится к типу погружных и предназначен для подачи воды из шахтных колодцев и буровых скважин с минимальным диаметром обсадных труб 100 мм и динамическим уровнем воды до 40 м. Подача при высоте подъема 20 м равна 1 м3/ч, а при 40 м – 0,5 м3/ч. Потребляемая мощность составляет 0,25 кВт. Питание насоса осуществляется от однофазной сети переменного тока напряжением 220 В.

1 – основание; 2 – диафрагма; 3 – упор; 4 – стакан; 5 – амортизатор; 6 – болт; 7 – якорь; 8 – корпус магнита; 9 – кожух; 10 – понтон; 11 – шланг; 12 – рукоятка; 13 – кабель; 14 – ярмо; 15 – катушка магнита; 16, 18 – регулировочные шайбы; 17 – шток; 19 – поршень; 20 – клапан

Рисунок 1.16 – Электромагнитный вибрационный насос НЭБ-1/20

Поршневые насосы отличаются от центробежных тем, что их подача не зависит от развиваемого напора. Другая особенность состоит в том, что эти насосы могут работать как самовсасывающие, и поэтому они не требуют предварительного залива водой перед пуском. Принцип работы поршневых насосов основан на изменении объема рабочей камеры без доступа воздуха. Их характерной конструктивной особенностью является наличие воздушного колпака, который используется для сглаживания в сети пульсаций подачи и давления, обусловленных циклическим рабочим процессом поршневого насоса.

Подача Q, м3/с, поршневого насоса простого действия определяется по формуле

, (1.12)

где F – площадь поршня, м2; S – ход поршня, м; n – число двойных ходов поршня в 1 мин; η – объемный КПД насоса, принимаемый равным 0,8…0,9.

Из формулы (1.12) следует, что подача не зависит от напора.

Для подачи воды из глубоких скважин применяется поршневой насос марки «Бурвод III» глубинного типа с приводом от электродвигателя или от двигателя внутреннего сгорания. Насосы выпускаются с двумя диаметрами цилиндра: 92 и 145 мм.

Винтовые насосы также относятся к группе объемных насосов роторного типа, рабочий орган которых в отличие от поршневых машин совершает не возвратно-поступательное, а вращательное движение. По аналогии с поршневыми они могут развивать высокие давления, но имеют равномерную по дачу и ненуждаются в воздушных колпаках. Винтовые насосы могут перекачивать воду с повышенным содержанием примесей (до 0,2 % по массе).

Подачу одновинтового насоса определяют по формуле

Q = 4eDhn, (1.13)

где Q – подача, м3/с; D – диаметр винта ротора, м; h – шаг винтовой поверхности статора, м; п – частота вращения ротора, с-1; е – эксцентриситет, м.

Из формулы (1.13) следует, что подача винтового насоса при заданных размерах его рабочих органов зависит только от частоты вращения ротора.

В сельском хозяйстве для подачи воды из шахтных колодцев и буровых скважин применяют винтовые насосы двух типов: 1) с двигателем, расположенным на поверхности земли, и с приводом через вертикальный вал; 2) с приводом от погружного электродвигателя. К первому типу относится насос 1В-20/3, широко применяемый на пастбищных водопойных пунктах в условиях Средней Азии.

Ко второму типу относится погружной насос 1В-В-1,6/16, подающий воду из скважин с диаметром обсадных труб 125 мм. Он имеет подачу 3 м3/ч при напоре 100 м. Привод осуществляется от погружного электродвигателя ПЭДВ-2,8-114 мощностью 2,8 кВт.

Дата добавления: 2015-01-21; просмотров: 4624; Опубликованный материал нарушает авторские права? | Защита персональных данных |

Не нашли то, что искали? Воспользуйтесь поиском:

Асинхронный электродвигатель, как и любой механизм, подвержен воздействию рабочих нагрузок, приводящих к возникновению неисправностей и как следствие поломки. В случаи выхода электродвигателя из строя, возникает необходимость в проведении его ремонта. Срок службы отремонтированного электродвигателя напрямую зависит от того, как качественно был произведет данный ремонт.

Существуют ряд неисправностей в электрических машинах, основными из которых являются:

– перегрев обмотки статора. В процессе работы электродвигателя происходит выделение тепла и перегрев статорной обмотки.

Основные причины перегрева обмотки статора:

а) перегрузка электродвигателя во время работы либо запуска;

б) неисправность системы вентиляции электродвигателя (поломка вентилятора в электродвигателе приводит к плохой циркуляции воздуха, а следовательно плохому выводу тепла из двигателя, что приводит к его нагреву)

в) изменение напряжения сети (при повышении напряжения выше нормы происходит повышенный нагрев стали сердечника статора; при снижении сетевого напряжения ниже номинального, повысится ток в обмотке статора и вызовет ее перегрев);

Признаки по которым можно определить, что обмотка статора перегрелась: неодинаковый ток в фазах обмотки; двигатель сильно гудит при работе; двигатель работает с пониженным вращающимся моментом.

– перегрев обмотки ротора.

Основные причины перегрева обмотки ротора:

а) обрыв или плохой контакт стержней беличьей клетки с короткозамкнутыми кольцами. В том случаи стержни заменяют и припаивают к кольцам. В случае того если беличья клетка сделана из алюминия ее перезаливают.

б) неисправность при проведении ремонта ротора.

Признаки по которым можно определить, что обмотка ротора перегрелась: электродвигатель сильно гудит; не развивает установочной частоты вращения; ток в статоре пульсирует.

– обрыв в обмотке статора.

При соединении обмоток в звезду: при обрыве одной фазы ток в ней отсутствует, а в других фазах завышен, в данном случаи электродвигатель не запустится; при обрыве в одной параллельной ветви фазы обмотки другие ветви этой фазы перегреются (если обрыв произойдет во время работы электродвигателя, он начнет усиленно гудеть).

При соединении обмоток в треугольник возможны следующие неисправности: при обрыве одной фазы обмотки, которая находится между двумя проводниками, ток в этих проводниках при работе будет меньше, чем в третьем проводнике; при обрыве в одной параллельной ветви повысится ток в других ветвях, что приводит к их перегреву (при этом пуск электродвигателя возможен, но мощность его значительно снижена).

Необходимо помнить, что работа электродвигателя на двух фазах недопустима, так как это приводит его к выходу из строя.

– обрыв в обмотке ротора.

Признаки по которым можно определить, что произошел обрыв обмотки ротора:

а) в сети возникают колебания тока;

б) обороты ротора снижаются, усиливается гудение в электродвигателе, возникают вибрации;

в) при обрыве в короткозамкнутом роторе нескольких стержней, пуск его невозможен;

г) при соединение фазной обмотки ротора в звезду нагруженный электродвигатель снижает частоту вращения примерно в два раза.

Обрыв в фазной обмотке можно определить с помощью омметра или амперметра и вольтметра, которым измеряют падение напряжения в катушечных группах обмотки ротора, куда предварительно подают постоянный ток от аккумулятора.

– пониженный вращающий момент.

Номинальный вращающий момент асинхронного двигателя обеспечивается правильным соединением обмоток ротора и статора, созданием нормальных контактных соединений в обмотках, контактных кольцах и щетках держателях.

Так, если при перевернутых элементах обмотки – секции, катушечной группы или целой фазы запускать асинхронный двигатель, то он не развивает номинального вращающего момента, а при вращении будет гудеть, издавая шум низкого тона; при номинальной нагрузке не достигнет полной частоты вращения, за короткое время обмотки нагреется.

Вращающий момент электродвигателя зависит от напряжения сети. Так как ток и магнитный поток пропорциональны напряжению, вращающий момент пропорционален квадрату напряжения. Это значит, что если напряжение питания уменьшилось, например с 380 до 340 В, то вращающий момент уменьшиться в отношении , т.е. более чем на 24%.

– повышенный уровень шума в электродвигателе.

Повышенный уровень шума в электродвигателе может быть вызван электромагнитными или механическими причинами.

К электромагнитным причинам относят:

а) ослабление прессовки активной стали сердечника, что приводит в возрастанию вибрации корпуса статора. Вибрация листов стали сердечника приводит к развитию контактной коррозии металла. Контактная коррозия разрушает изоляцию листов стали, что приводит к замыканию и дополнительному нагреву сердечника. При общем ослаблении прессовки активной стали сердечника необходимо перешихтовать. При местном ослаблении производят уплотнение забивкой гетинаксовых или текстолитовых клиньев между листами шихтовки и зубцах. Клинья предварительно окунают в лак;

б) перевернута одна фаза. При этом возникает отличный от обычного шум в двигателе, и в перевернутой фазе повышается ток. Необходимо правильно выполнить соединение фазы, т.е. исключить «переворачивание» при подключении указанных элементов обмотки;

в) обмотка статора соединена треугольником, имеет параллельные ветви. При обрыве в отдельных катушках в электродвигателе, возникнет повышенный уровень шума;

Если соединить все катушки обмотки последовательно, а фазы – в звезду, гудение станет нормальным, но сила тока по фазам будет различной;

г) совпадение или близкое соотношении числа пазов сердечника статора и ротора может вызвать пульсацию магнитного потока и, следовательно, высокий уровень шума. Для устранения этого явления следует заменить ротор с другими соотношениями зубцов статора и ротора или перемотать статорную обмотку с сокращением шага;

д) большой эксцентриситет воздушного зазора, что может привести к возрастанию и асимметрии токов в зазорах в режиме холостого хода. Эксцентриситет воздушного зазора не должен превышать 10%.

К механическим причинам относят:

а) криволинейные каналы подачи воздуха в двигатель, что особенно заметно в двигателях с частотой вращения 1500 и 3000 об/мин. Вентиляционный шум снижают, изменяя лопатку вентилятора и конфигурацию щитов, что приводит к уменьшению вихреобразования;

б) неисправности подшипников качения. Здесь могут быть следующие дефекты, вызывающие повышенный шум: большой натяг при посадке подшипника на вал, появление усталостных отслоений на контактной поверхности беговых колец, выработка и проседание сепаратора, сколы в буртиках беговых колец. Такие подшипники следует заменить;

в) резонирующие отдельные части двигателя, когда частота их собственных колебаний совпадает с частотой вращения ротора. Это явление устраняют в машине приваркой ребер жесткости на конструктивных элементах щитов, воздухопроводов, фундаментных плит.

– повреждения беличьих клеток, их влияние на работу электродвигателя.

У асинхронных электродвигателей c короткозамкнутым ротором стержни беличьих клеток, будучи защемленными на выходе из паза при наличии короткозамыкающего кольца на некотором расстоянии от сердечника, подвергаются большим механическим усилиям. B связи с этим возможны разрывы медных или латунных стержней около сердечника или короткозамыкающих колец. Усилия эти будут большими при пуске двигателя и от центробежных сил, особенно при плохо отбалансированном роторе. B практике также нередко встречаются случаи возникновения вибраций роторов c короткозамкнутой беличьей клеткой, которая изготовлена из меди или латуни. Причиной вибрации является «разъедание» стенок пазов стержнями, a при пуске двигателя прослабленные в пазах стержни перемещаются от центробежных усилий вверх, в связи c чем и возникают вибрации.

У большинства литых алюминиевых клеток возникают обрывы стержней в пазах. Обрывы в беличьих клетках вызывают пульсацию тока в статоре, частота которого соответствует частоте скольжения. Частота пульсации тока и вращающего момента c изменением нагрузки также изменяется. Частота вращения ротора колеблется даже при изменении малых нагрузок. Выявление и устранение повреждений беличьих клеток производятся следующим образом:

— в разобранном виде осматривают ротор. Оборванные стержни в медной или латунной беличьей клетке заменяют, обрывы в кольцах запаивают;

— если обнаружены обрывы стержней в пазах, залитых алюминием, такую клетку перезаливают свежим, первичным алюминием. Применять повторно выплавленный алюминий не следует, так как это может вызвать образование раковин в стержнях и короткозамыкающих кольцах;

— если осмотром не удается обнаружить обрывы стержней в пазах, применяют старый испытанный метод, который заключается в следующем. В статорную обмотку подают пониженное напряжение в пределах 0,2-0,3U. Затем стальной пластиной быстро проводят по окружности ротора, перемыкая поочередно зубцы активной стали сердечника. Там, где соседние стержни беличьей клетки целые, стальная пластина электромагнитным полем притянется к железу и будет дребезжать. Если перемещающаяся пластина попадает на оборванные стержни, она будет слабо притягиваться и слабо дребезжать.

– Нагрев и искрение щеток и контактных колец.

B процессе работы машины неравномерное распределение тока между щетками может вызвать искрение и нагрев щеток и контактных колец. Причиной такой неисправности может быть перегрузка по току, грязь и зависание щеток в обоймах щеткодержателей, увеличенный коэффициент трения щеток, жесткие канатики щеток, неправильно выбранная марка щеток, плохой контакт в хомутиках стержней фазной обмотки ротора, вибрация ротора.

Указанные неисправности устраняют следующим образом:

— персоналу, ведущему техническое обслуживание, необходимо периодически следить по приборам за нагрузкой асинхронных электродвигателей (c фазным ротором) и не допускать перегрузок, доводящих до искрения щеток;

— при техническом обслуживании следует периодически продергивать щетки в обоймах щеткодержателей и продувать сухим компрессорным воздух давлением 0,2 МПа контактный узел;

— щетки c увеличенным коэффициентом трения быстро срабатываются и нагревают щеточный аппарат и контактные кольца, даже при номинальной нагрузке. Для уменьшения коэффициента трения щеток их подвергают пропитке в различных составах;

— обмотку необходимо перепаять, устранить также другие нарушения контактов в цепи фазного ротора;

— при возобновлении вибрации двигателя и искрения щеток следует разобраться в причинах. Возможны нарушение центровки двигателя из-за смещения линии валов двигатель – редуктор приводимого механизма, повреждения фундаментных плит двигателя или редуктора, нарушение балансировки ротора. Все это приводит к отрыву щеток от колец и искрению.

2013-2018 ООО «ХардМоторс»

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *