Сколько потребляет электрокотел

Содержание

Расчет отопления по площади помещения

Создавать систему отопления в собственном доме или даже в городской квартире – чрезвычайно ответственное занятие. Будет совершенно неразумным при этом приобретать котельное оборудование, как говорится, «на глазок», то есть без учета всех особенностей жилья. В этом вполне не исключено попадание в две крайности: или мощности котла будет недостаточно – оборудование станет работать «на полную катушку», без пауз, но так и не давать ожидаемого результата, либо, наоборот, будет приобретен излишне дорогой прибор, возможности которого останутся совершенно невостребованными.

Расчет отопления по площади помещения

Но и это еще не все. Мало правильно приобрести необходимый котел отопления – очень важно оптимально подобрать и грамотно расположить по помещениям приборы теплообмена – радиаторы, конвекторы или «теплые полы». И опять, полагаться только лишь на свою интуицию или «добрые советы» соседей – не самый разумный вариант. Одним словом, без определенных расчетов – не обойтись.

Конечно, в идеале, подобные теплотехнические вычисления должны проводить соответствующие специалисты, но это часто стоит немалых денег. А неужели неинтересно попытаться выполнить это самостоятельно? В настоящей публикации будет подробно показано, как выполняется расчет отопления по площади помещения, с учетом многих важных нюансов. По аналогии можно будет выполнить расчет отопления в частном доме калькулятор, встроенный в эту страницу, поможет выполнить необходимые вычисления. Методику нельзя назвать совершенно «безгрешной», однако, она все же позволяет получить результат с вполне приемлемой степенью точности.

Простейшие приемы расчета

Для того чтобы система отопления создавала в холодное время года комфортные условия проживания, она должна справляться с двумя основными задачами. Эти функции тесно связаны между собой, и разделение их – весьма условно.

  • Первое – это поддержание оптимального уровня температуры воздуха во всем объеме отапливаемого помещения. Безусловно, по высоте уровень температуры может несколько изменяться, но этот перепад не должен быть значительным. Вполне комфортными условиями считается усредненный показатель в +20 °С – именно такая температура, как правило, принимается за исходную в теплотехнических расчетах.

Иными словами, система отопления должна быть способной прогреть определенный объем воздуха.

Если уж подходить с полной точностью, то для отдельных помещений в жилых домах установлены стандарты необходимого микроклимата – они определены ГОСТ 30494-96. Выдержка из этого документа – в размещенной ниже таблице:

Предназначение помещения Температура воздуха, °С Относительная влажность, % Скорость движения воздуха, м/с
оптимальная допустимая оптимальная допустимая, max оптимальная, max допустимая, max
Для холодного времени года
Жилая комната 20÷22 18÷24 (20÷24) 45÷30 60 0.15 0.2
То же, но для жилых комнат в регионах с минимальными температурами от — 31 °С и ниже 21÷23 20÷24 (22÷24) 45÷30 60 0.15 0.2
Кухня 19÷21 18÷26 Н/Н Н/Н 0.15 0.2
Туалет 19÷21 18÷26 Н/Н Н/Н 0.15 0.2
Ванная, совмещенный санузел 24÷26 18÷26 Н/Н Н/Н 0.15 0.2
Помещения для отдыха и учебных занятий 20÷22 18÷24 45÷30 60 0.15 0.2
Межквартирный коридор 18÷20 16÷22 45÷30 60 Н/Н Н/Н
Вестибюль, лестничная клетка 16÷18 14÷20 Н/Н Н/Н Н/Н Н/Н
Кладовые 16÷18 12÷22 Н/Н Н/Н Н/Н Н/Н
Для теплого времени года (Норматив только для жилых помещений. Для остальных – не нормируется)
Жилая комната 22÷25 20÷28 60÷30 65 0.2 0.3
  • Второе – компенсирование потерь тепла через элементы конструкции здания.

Самый главный «противник» системы отопления — это теплопотери через строительные конструкции

Увы, теплопотери – это самый серьезный «соперник» любой системы отопления. Их можно свести к определенному минимуму, но даже при самой качественной термоизоляции полностью избавиться от них пока не получается. Утечки тепловой энергии идут по всем направлениям – примерное распределение их показано в таблице:

Элемент конструкции здания Примерное значение теплопотерь
Фундамент, полы по грунту или над неотапливаемыми подвальными (цокольными) помещениями от 5 до 10%
«Мостики холода» через плохо изолированные стыки строительных конструкций от 5 до 10%
Места ввода инженерных коммуникаций (канализация, водопровод, газовые трубы, электрокабели и т.п.) до 5%
Внешние стены, в зависимости от степени утепленности от 20 до 30%
Некачественные окна и внешние двери порядка 20÷25%, из них около 10% — через негерметизированные стыки между коробками и стеной, и за счет проветривания
Крыша до 20%
Вентиляция и дымоход до 25 ÷30%

Естественно, чтобы справиться с такими задачами, система отопления должна обладать определенной тепловой мощностью, причем этот потенциал не только должен соответствовать общим потребностям здания (квартиры), но и быть правильно распределенным по помещениям, в соответствии с их площадью и целым рядом других важных факторов.

Обычно расчет и ведется в направлении «от малого к большому». Проще говоря, просчитывается потребное количество тепловой энергии для каждого отапливаемого помещения, полученные значения суммируются, добавляется примерно 10% запаса (чтобы оборудование не работало на пределе своих возможностей) – и результат покажет, какой мощности необходим котел отопления. А значения по каждой комнате станут отправной точкой для подсчета необходимого количества радиаторов.

Самый упрощённый и наиболее часто применяемый в непрофессиональной среде метод – принять норму 100 Вт тепловой энергии на каждый квадратный метр площади:

Самый примитивный способ подсчета — соотношение 100 Вт/м²

Q = S × 100

Q – необходимая тепловая мощность для помещения;

S – площадь помещения (м²);

100 — удельная мощность на единицу площади (Вт/м²).

Например, комната 3.2 × 5,5 м

S = 3,2 × 5,5 = 17,6 м²

Q = 17,6 × 100 = 1760 Вт ≈ 1,8 кВт

Способ, очевидно, очень простой, но весьма несовершенный. Стоит сразу оговориться, что он условно применим только при стандартной высоте потолков – примерно 2.7 м (допустимо – в диапазоне от 2.5 до 3.0 м). С этой точки зрения, более точным станет расчет не от площади, а от объема помещения.

Расчет тепловой мощности от объема помещения

Понятно, что в этом случае значение удельной мощности рассчитано на кубический метр. Его принимают равным 41 Вт/м³ для железобетонного панельного дома, или 34 Вт/м³ — в кирпичном или выполненном из других материалов.

Q = S × h × 41 (или 34)

h – высота потолков (м);

41 или 34 – удельная мощность на единицу объема (Вт/м³).

Например, та же комната, в панельном доме, с высотой потолков в 3.2 м:

Q = 17,6 × 3,2 × 41 = 2309 Вт ≈ 2,3 кВт

Результат получается более точным, так как уже учитывает не только все линейные размеры помещения, но даже, в определенной степени, и особенности стен.

Но все же до настоящей точности он еще далек – многие нюансы оказываются «за скобками». Как выполнить более приближенные к реальным условиям расчеты – в следующем разделе публикации.

Возможно, вас заинтересует информация о том, что собой представляют биметаллические радиаторы отопления

Проведение расчетов необходимой тепловой мощности с учетом особенностей помещений

Рассмотренные выше алгоритмы расчетов бывают полезны для первоначальной «прикидки», но вот полагаться на них полностью все же следует с очень большой осторожностью. Даже человеку, который ничего не понимает в строительной теплотехнике, наверняка могут показаться сомнительными указанные усредненные значения – не могут же они быть равными, скажем, для Краснодарского края и для Архангельской области. Кроме того, комната — комнате рознь: одна расположена на углу дома, то есть имеет две внешних стенки, а другая с трех сторон защищена от теплопотерь другими помещениями. Кроме того, в комнате может быть одно или несколько окон, как маленьких, так и весьма габаритных, порой – даже панорамного типа. Да и сами окна могут отличаться материалом изготовления и другими особенностями конструкции. И это далеко не полный перечень – просто такие особенности видны даже «невооруженным глазом».

Одним словом, нюансов, влияющих на теплопотери каждого конкретного помещения – достаточно много, и лучше не полениться, а провести более тщательный расчет. Поверьте, по предлагаемой в статье методике это будет сделать не так сложно.

Общие принципы и формула расчета

В основу расчетов будет положено все то же соотношение: 100 Вт на 1 квадратный метр. Но вот только сама формула «обрастает» немалым количеством разнообразных поправочных коэффициентов.

Q = (S × 100) × a × b× c × d × e × f × g × h × i × j × k × l × m

Латинские буквы, обозначающие коэффициенты, взяты совершенно произвольно, в алфавитном порядке, и не имеют отношения к каким-либо стандартно принятым в физике величинам. О значении каждого коэффициента будет рассказано отдельно.

  • «а» — коэффициент, учитывающий количество внешних стен в конкретной комнате.

Очевидно, что чем больше в помещении внешних стен, тем больше площадь, через которую происходит тепловые потери. Кроме того, наличие двух и более внешних стен означает еще и углы – чрезвычайно уязвимые места с точки зрения образования «мостиков холода». Коэффициент «а» внесет поправку на эту специфическую особенность комнаты.

Коэффициент принимают равным:

— внешних стен нет (внутреннее помещение): а = 0,8;

— внешняя стена одна: а = 1,0;

— внешних стен две: а = 1,2;

— внешних стен три: а = 1,4.

  • «b» — коэффициент, учитывающий расположение внешних стен помещения относительно сторон света.

На количество теплопотерь через стены влияет их расположение относительно сторон света

Возможно, вас заинтересует информация о том, какие бывают электрические котлы для отопления частного дома

Даже в самые холодные зимние дни солнечная энергия все же оказывает влияние на температурный баланс в здании. Вполне естественно, что та сторона дома, которая обращена на юг, получает определенный нагрев от солнечных лучей, и теплопотери через нее ниже.

А вот стены и окна, обращённые на север, Солнца «не видят» никогда. Восточная часть дома, хотя и «прихватывает» утренние солнечные лучи, какого-либо действенного нагрева от них все же не получает.

Исходя из этого, вводим коэффициент «b»:

— внешние стены комнаты смотрят на Север или Восток: b = 1,1;

— внешние стены помещения ориентированы на Юг или Запад: b = 1,0.

  • «с» — коэффициент, учитывающий расположение помещения относительно зимней «розы ветров»

Возможно, эта поправка не столь обязательна для домов, расположенных на защищенных от ветров участках. Но иногда преобладающие зимние ветры способны внести свои «жесткие коррективы» в тепловой баланс здания. Естественно, что наветренная сторона, то есть «подставленная» ветру, будет терять значительно больше тела, по сравнению с подветренной, противоположной.

Существенные коррективы могут внести преобладающие зимние ветры

По результатам многолетних метеонаблюдений в любом регионе составляется так называемая «роза ветров» — графическая схема, показывающая преобладающие направления ветра в зимнее и летнее время года. Эту информацию можно получить в местной гидрометеослужбе. Впрочем, многие жители и сами, без метеорологов, прекрасно знают, откуда преимущественно дуют ветра зимой, и с какой стороны дома обычно наметает наиболее глубокие сугробы.

Если есть желание провести расчеты с более высокой точностью, то можно включить в формулу и поправочный коэффициент «с», приняв его равным:

— наветренная сторона дома: с = 1,2;

— подветренные стены дома: с = 1,0;

— стена, расположенные параллельно направлению ветра: с = 1,1.

  • «d» — поправочный коэффициент, учитывающий особенности климатических условий региона постройки дома

Естественно, количество теплопотерь через все строительные конструкции здания будет очень сильно зависеть от уровня зимних температур. Вполне понятно, что в течение зимы показатели термометра «пляшут» в определенном диапазоне, но для каждого региона имеется усредненный показатель самых низких температур, свойственных наиболее холодной пятидневке года (обычно это свойственно январю). Для примера – ниже размещена карта-схема территории России, на которой цветами показаны примерные значения.

Карта-схема минимальных январских температур

Обычно это значение несложно уточнить в региональной метеослужбе, но можно, в принципе, ориентироваться и на свои собственные наблюдения.

Итак, коэффициент «d», учитывающий особенности климата региона, для наших расчетом в принимаем равным:

— от – 35 °С и ниже: d = 1,5;

— от – 30 °С до – 34 °С: d = 1,3;

— от – 25 °С до – 29 °С: d = 1,2;

— от – 20 °С до – 24 °С: d = 1,1;

— от – 15 °С до – 19 °С: d = 1,0;

— от – 10 °С до – 14 °С: d = 0,9;

— не холоднее – 10 °С: d = 0,7.

  • «е» — коэффициент, учитывающий степень утепленности внешних стен.

Суммарное значение тепловых потерь здания напрямую связано со степенью утепленности всех строительных конструкций. Одним из «лидеров» по теплопотерям являются стены. Стало быть, значение тепловой мощности, необходимое для поддержания комфортных условий проживания в помещении, находится в зависимости от качества их термоизоляции.

Огромное значение имеет степень утепленности внешних стен

Значение коэффициента для наших расчетов можно принять следующее:

— внешние стены не имеют утепления: е = 1,27;

— средняя степень утепления – стены в два кирпича или предусмотрена их поверхностная термоизоляция другими утеплителями: е = 1,0;

— утепление проведено качественно, на основании проведенных теплотехнических расчетов: е = 0,85.

Ниже по ходу настоящей публикации будут даны рекомендации о том, как можно определить степень утепленности стен и иных конструкций здания.

  • коэффициент «f» — поправка на высоту потолков

Потолки, особенно в частных домах, могут иметь различную высоту. Стало быть, и тепловая мощность на прогрев того или иного помещения одинаковой площади будет различаться еще и по этому параметру.

Не будет большой ошибкой принять следующие значения поправочного коэффициента «f»:

— высота потолков до 2.7 м: f = 1,0;

— высота потоков от 2,8 до 3,0 м: f = 1,05;

— высота потолков от 3,1 до 3,5 м: f = 1,1;

— высота потолков от 3,6 до 4,0 м: f = 1,15;

— высота потолков более 4,1 м: f = 1,2.

  • «g» — коэффициент, учитывающий тип пола или помещение, расположенное под перекрытием.

Как было показано выше, пол является одним из существенных источников теплопотерь. Значит, необходимо внести некоторые корректировки в расчет и на эту особенность конкретного помещения. Поправочный коэффициент «g» можно принять равным:

— холодный пол по грунту или над неотапливаемым помещением (например, подвальным или цокольным): g = 1,4;

— утепленный пол по грунту или над неотапливаемым помещением: g = 1,2;

— снизу расположено отапливаемое помещение: g = 1,0.

  • «h» — коэффициент, учитывающий тип помещения, расположенного сверху.

Нагретый системой отопления воздух всегда поднимается вверх, и если потолок в помещении холодный, то неизбежны повышенные теплопотери, которые потребуют увеличения необходимой тепловой мощности. Введём коэффициент «h», учитывающий и эту особенность рассчитываемого помещения:

— сверху расположен «холодный» чердак: h = 1,0;

— сверху расположен утепленный чердак или иное утепленное помещение: h = 0,9;

— сверху расположено любое отапливаемое помещение: h = 0,8.

  • «i» — коэффициент, учитывающий особенности конструкции окон

Окна – один из «магистральных маршрутов» течек тепла. Естественно, многое в этом вопросе зависит от качества самой оконной конструкции. Старые деревянные рамы, которые раньше повсеместно устанавливались во всех домах, по степени своей термоизоляции существенно уступают современным многокамерным системам со стеклопакетами.

Без слов понятно, что термоизоляционные качества этих окон — существенно различаются

Но и между ПВЗХ-окнами нет полного единообразия. Например, двухкамерный стеклопакет (с тремя стеклами) будет намного более «теплым» чем однокамерный.

Значит, необходимо ввести определенный коэффициент «i», учитывающий тип установленных в комнате окон:

— стандартные деревянные окна с обычным двойным остеклением: i = 1,27;

— современные оконные системы с однокамерным стеклопакетом: i = 1,0;

— современные оконные системы с двухкамерным или трехкамерным стеклопакетом, в том числе и с аргоновым заполнением: i = 0,85.

  • «j» — поправочный коэффициент на общую площадь остекления помещения

Какими бы качественными окна ни были, полностью избежать теплопотерь через них все равно не удастся. Но вполне понятно, что никак нельзя сравнивать маленькое окошко с панорамным остеклением чуть ли ни на всю стену.

Чем больше площадь остекления, тем значительнее общие теплопотери

Потребуется для начала найти соотношение площадей всех окон в комнате и самого помещения:

х = ∑Sок / Sп

∑Sок – суммарная площадь окон в помещении;

Sп – площадь помещения.

В зависимости от полученного значения и определяется поправочный коэффициент «j»:

— х = 0 ÷ 0,1 → j = 0,8;

— х = 0,11 ÷ 0,2 → j = 0,9;

— х = 0,21 ÷ 0,3 → j = 1,0;

— х = 0,31 ÷ 0,4 → j = 1,1;

— х = 0,41 ÷ 0,5 → j = 1,2;

  • «k» — коэффициент, дающий поправку на наличие входной двери

Дверь на улицу или на неотапливаемый балкон — это всегда дополнительная «лазейка» для холода

Дверь на улицу или на открытый балкон способна внести свои коррективы в тепловой баланс помещения – каждое ее открытие сопровождается проникновением в помещение немалого объема холодного воздуха. Поэтому имеет смысл учесть и ее наличие – для этого введем коэффициент «k», который примем равным:

— двери нет: k = 1,0;

— одна дверь на улицу или на балкон: k = 1,3;

— две двери на улицу или на балкон: k = 1,7.

  • «l» — возможные поправки на схему подключения радиаторов отопления

Возможно, кому-то это покажется несущественной мелочью, но все же – почему бы сразу не учесть планируемую схему подключения радиаторов отопления. Дело в том, что их теплоотдача, а значит, и участие в поддержании определенного температурного баланса в помещении, достаточно заметно меняется при разных типах врезки труб подачи и «обратки».

Иллюстрация Тип врезки радиатора Значение коэффициента «l»
Подключение по диагонали: подача сверху, «обратка» снизу l = 1.0
Подключение с одной стороны: подача сверху, «обратка» снизу l = 1.03
Двухстороннее подключение: и подача, и «обратка» снизу l = 1.13
Подключение по диагонали: подача снизу, «обратка» сверху l = 1.25
Подключение с одной стороны: подача снизу, «обратка» сверху l = 1.28
Одностороннее подключение, и подача, и «обратка» снизу l = 1.28
  • «m» — поправочный коэффициент на особенности места установки радиаторов отопления

И, наконец, последний коэффициент, который также связан с особенностями подключения радиаторов отопления. Наверное, понятно, что если батарея установлена открыто, ничем не загораживается сверху и с фасадной части, то она будет давать максимальную теплоотдачу. Однако, такая установка возможна далеко не всегда – чаще радиаторы частично скрываются подоконниками. Возможны и другие варианты. Кроме того, некоторые хозяева, стараясь вписать приоры отопления в создаваемый интерьерный ансамбль, скрывают их полностью или частично декоративными экранами – это тоже существенно отражается на тепловой отдаче.

Если есть определенные «наметки», как и где будут монтироваться радиаторы, это также можно учесть при проведении расчетов, введя специальный коэффициент «m»:

Иллюстрация Особенности установки радиаторов Значение коэффициента «m»
Радиатор расположен на стене открыто или не перекрывается сверху подоконником m = 0,9
Радиатор сверху перекрыт подоконником или полкой m = 1,0
Радиатор сверху перекрыт выступающей стеновой нишей m = 1,07
Радиатор сверху прикрыт подоконником (нишей), а с лицевой части — декоративным экраном m = 1,12
Радиатор полностью заключен в декоративный кожух m = 1,2

Итак, с формулой расчета ясность есть. Наверняка, кто-то из читателей сразу возьмется за голову – мол, слишком сложно и громоздко. Однако, если к делу подойти системно, упорядочено, то никакой сложности нет и в помине.

У любого хорошего хозяина жилья обязательно есть подробный графический план своих «владений» с проставленными размерами, и обычно – сориентированный по сторонам света. Климатические особенности региона уточнить несложно. Останется лишь пройтись по всем помещениям с рулеткой, уточнить некоторые нюансы по каждой комнате. Особенности жилья — «соседство по вертикали» сверху и снизу, расположение входных дверей, предполагаемую или уже имеющуюся схему установки радиаторов отопления – никто, кроме хозяев, лучше не знает.

Рекомендуется сразу составить рабочую таблицу, куда занести все необходимые данные по каждому помещению. В нее же будет заноситься и результат вычислений. Ну а сами вычисления поможет провести встроенный калькулятор, в котором уже «заложены» все упомянутые выше коэффициенты и соотношения.

Если какие-то данные получить не удалось, то можно их, конечно, в расчет не принимать, но в этом случае калькулятор «по умолчанию» подсчитает результат с учетом наименее благоприятных условий.

Можно рассмотреть на примере. Имеем план дома (взят совершенно произвольный).

Для примера взят совершенно произвольный план жилого дома

Регион с уровнем минимальных температур в пределах -20 ÷ 25 °С. Преобладание зимних ветров = северо-восточные. Дом одноэтажный, с утепленным чердаком. Утепленные полы по грунту. Выбрана оптимальное диагональное подключение радиаторов, которые будут устанавливаться под подоконниками.

Составляем таблицу примерно такого типа:

Помещение, его площадь, высота потолка. Утепленность пола и «соседство» сверху и снизу Количество внешних стен и их основное расположение относительно сторон света и «розы ветров». Степень утепления стен Количество, тип и размер окон Наличие входных дверей (на улицу или на балкон) Требуемая тепловая мощность (с учетом 10% резерва)
Площадь 78,5 м² 10,87 кВт ≈ 11 кВт
1. Прихожая. 3,18 м². Потолок 2.8 м. Утеленный пол по грунту. Сверху — утепленный чердак. Одна, Юг, средняя степень утепления. Подветренная сторона Нет Одна 0,52 кВт
2. Холл. 6,2 м². Потолок 2.9 м. Утепленный пол по грунту. Сверху — утепленный чердак Нет Нет Нет 0,62 кВт
3. Кухня-столовая. 14,9 м². Потолок 2.9 м. Хорошо утепленный пол по грунту. Свеху — утепленный чердак Две. Юг-Запад. Средняя степень утепления. Подветренная сторона Два, однокамерный стеклопакет, 1200 × 900 мм Нет 2.22 кВт
4. Детская комната. 18,3 м². Потолок 2.8 м. Хорошо утепленный пол по грунту. Сверху — утепленный чердак Две, Север — Запад. Высокая степень утепления. Наветренная Два, двухкамерный стеклопакет, 1400 × 1000 мм Нет 2,6 кВт
5. Спальная. 13,8 м². Потолок 2.8 м. Хорошо утепленный пол по грунту. Сверху — утепленный чердак Две, Север, Восток. Высокая степень утепления. Наветренная сторона Одно, двухкамерный стеклопакет, 1400 × 1000 мм Нет 1,73 кВт
6. Гостиная. 18,0 м². Потолок 2.8 м. Хорошо утепленный пол. Сверху -утепленный чердак Две, Восток, юг. Высокая степень утепления. Параллельно направлению ветра Четыре, двухкамерный стеклопакет, 1500 × 1200 мм Нет 2,59 кВт
7. Санузел совмещенный. 4,12 м². Потолок 2.8 м. Хорошо утепленный пол. Сверху -утепленный чердак. Одна, Север. Высокая степень утепления. Наветренная сторона Одно. Деревянная рама с двойным остеклением. 400 × 500 мм Нет 0,59 кВт
ИТОГО:

Затем, пользуясь размешенным ниже калькулятором производим расчет для каждого помещения (уже с учетом 10% резерва). С использованием рекомендуемого приложения это не займет много времени. После этого останется просуммировать полученные значения по каждой комнате – это и будет необходимая суммарная мощность системы отопления.

Результат по каждой комнате, кстати, поможет правильно выбрать требуемое количество радиаторов отопления – останется только разделить на удельную тепловую мощность одной секции и округлить в большую сторону.

Калькулятор расчета требуемой тепловой мощности отопления по помещениям

Согласитесь, что рассчитанные результаты, особенно если рассматривать по помещениям в отдельности, могут существенно отличаться от тех, которые получились бы при упоминавшимся выше соотношении 100 Вт на 1 м².

Кстати, калькулятор дает возможность немного «поиграть» с теми исходными данными, которые хозяева в силах изменить, и посмотреть, как будут меняться результаты. Возможно, это поможет выявить «слабые места» и придаст своеобразный импульс на принятие мер по обеспечению максимальной утепленности дома. Затраты на качественную термоизоляцию очень быстро окупятся экономией на системе отопления.

Приведенная система расчета тепловой мощности отопления может вызвать вопрос в том плане, что достаточно размыто указаны критерии утепленности стен. С этим можно согласиться – но это сделано лишь для упрощения самостоятельны вычислений с вполне допустимым уровнем погрешности. Если отталкиваться от точного «канонического» расчета тепловых потерь, алгоритм получится слишком сложным и громоздким, и далеко не каждый среднестатистический посетитель сможет с ним разобраться.

Тем не менее, в качестве полезного «бонуса» будет представлена несложная методика достаточно точной оценки теплотехнических характеристик стен и других элементов здания, чтобы любой хозяин смог сам увидеть, насколько они утеплены, и в какой дополнительной термоизоляции еще нуждаются.

Возможно, вас заинтересует информация о том, каков расход газа на отопление дома 200м2

Оценка степени утепленности элемента дома и требуемой толщины термоизоляции

Общий принцип расчета

Принцип расчета заключается в том, что каждая строительная конструкция жилого дома должна обладать определенным нормированным значением сопротивления теплопередаче. Эти параметры рассчитаны специалистами и сведены в таблицах СНиП, отдельно для каждого региона, в зависимости от особенностей климатических условий.

Таблицы слишком объемны, поэтому в нашем случае предлагаем воспользоваться картой-схемой, расположенной ниже.

Карта схема с нормированными значениями сопротивления теплопередаче строительных конструкций

Обратите внимание, что для стен, перекрытий (полов или потолков) и покрытий (кровля) указаны свои значений – они выделены различными оттенками.

Чаще всего и стены, и другие ограждающие элементы дома имеют многослойную конструкцию (впрочем, это не догма – возможно и однослойное строение, но так расчет будет ещё проще). Каждый из слоев обладает собственными характеристиками термического сопротивления, и все они в сумме дадут итоговый параметр.

Значение сопротивления теплопередаче для каждого отдельного слоя равно:

Rx = hх / λх

hх — толщина слоя в метрах

λх — значение коэффициента теплопроводности материала слоя. Это табличная величина, которую несложно отыскать в справочниках для любого из строительных, отделочных или утеплительных материалов.

Таким образом, зная особенности конструкции стены или другого ограждения, несложно рассчитать суммарную величину сопротивления теплопередаче и выявить, насколько она не соответствует нормированному значению. Ну а если полученную разницу умножить на коэффициент теплопроводности выбранного термоизоляционного материала, то это станет рекомендуемой толщиной утепления, чтобы конструкция соответствовала необходимым параметрам.

Упрощенная схема многослойной ограждающей конструкции

В предложенном ниже калькуляторе предусмотрен расчет для многослойной конструкции, включающей основной слой (поз. 1), уже имеющееся утепление (если оно есть) (поз. 2), слой внутренней (поз. 3) и внешней (поз. 4) отделки. Если каких-то слоев в реальности нет – то этот пункт в калькуляторе просто не заполняется.

Примечание: в расчёт не берутся внешние отделочные слои вентилируемых конструкций фасада или кровли (например, сайдинг или кровельный материал), так как их термическое сопротивление не оказывает значимого воздействия на общую утепленность.

Последним пунктом в калькуляторе будет предложено выбрать тот или иной вид утеплителя, и в результате расчетов будет указана рекомендуемая толщина термоизоляционного слоя.

Возможно, вас заинтересует информация о том, что какой утеплитель лучше под сайдинг

Калькулятор оценки необходимости дополнительного утепления

Вот теперь оценить степень утепленности своих стен (или других элементов здания), для расчета необходимой тепловой мощности отопления – уже не составит большого труда. Можно поступить примерно так – ввести все запрашиваемые значения, а в конце указать в качестве утеплителя, например, минеральную базальтовую вату.

  • Если получится результат, стремящийся к нулю (менее 10 мм толщины) или даже отрицательное значение, то можно считать стены хорошо утепленными.
  • При рекомендуемой толщине утепления до 75 ÷ 80 мм можно условно считать, что стены имеют среднюю степень утепленности.
  • В том случае, когда результат больше, а еще хуже — «зашкаливает» за 100 мм – беда, уровень теплопотерь очень высокий, и система отопления будет «пожирать» энергоресурсы на никому не нужный «обогрев улицы». И в этом случае главные усилия должны быть сконцентрированы на обеспечение надежной термоизоляции.

Безусловно, при желании в интернете можно отыскать более мощные программы профессионального уровня сложности для расчета теплотехнических характеристик системы отопления. В качестве примера – видеосюжет, в котором показан процесс подобного расчета. Но, повторимся, для проведения самостоятельных вычислений вполне подойдет и предложенная методика – уровень погрешности будет вполне допустимым.

Видео: пример расчета системы отопления с помощью специальной прикладной программы

Возможно, вас заинтересует информация о том, что такое байпас в системе отопления

Евгений Афанасьев главный редактор

Автор публикации11.02.2016

Понравилась статья?
Сохраните, чтобы не потерять!

Мощность электрокотла

Чтобы система была сбалансированной и подходила под определенные параметры помещения нужно делать расчет котла. В разное время на улице температура меняется, даже время суток имеет значение, не говоря уже о ветре. Если вы ищете простой способ, как сделать расчет мощности электрокотла для отопления дома, то, скорее всего, ваш путь не увенчается победным финишем. Дело в том, что приблизительно можно конечно прикинуть на глаз, исходя из площади помещения, столько потребуется киловатт в вашем случае. Но хотя бы приближенно точный расчет можно сделать, только оперируя значениями теплопотерь всех материалов, из которых изготовлены стены, пол и потолок. Читайте также «как подключить электрокотел».

Зависимость мощности электрических котлов от квадратуры

Есть несколько способов расчета мощности электрического котла, исходя из площади, теплопотерь и теплоносителя.

Самый простой и топорный метод расчета мощности электрокотла для отопления дома основан на количестве квадратных метров в помещении, которое нужно обогреть. Пропорция 100 Вт на метр квадратный вполне подходит для средней полосы, там, где климат более мягкий. Для южных регионов можно немного уменьшить мощность, а для северных, соответственно, увеличить. В советское время в среднем брали 120 Вт, но это было давно, когда ресурсы никто не считал.

Сегодня такой подход нельзя назвать правильным, хотя лучше уж купить нагреватель помощнее, чем мёрзнуть зимой из-за недостатка киловатт. Отталкиваясь от квадратуры также можно сделать расчет электрического котла отопления, используя формулу. Для этого понадобятся следующие показатели:

  • количество квадратных метров отапливаемого помещения;
  • коэффициент удельной мощности для определенного региона.

Для южных широт коэффициент составляет 0,7, для средней полосы – 1,2, для северных регионов – до 2.

Расчет электрического котла отопления заключается в умножении площади помещения на коэффициент региона. Значение вы получите в ваттах, чтобы перевести его в привычные киловатты, результат вычислений нужно поделить на десять.

Такой подход хоть и неидеальный, но хоть как-то учитывает климатические условия, которые, в свою очередь, влияют на время остывания помещения. Теперь сравним приблизительный и более точный метод расчета электрокотла для отопления дома на примере. Возьмём для наглядности дом 100 м кв, который находится в средней климатической полосе. По формуле мы можем посчитать, что для обогрева этого дома потребуется нагреватель мощностью 10 кВт, а это полностью сходится с результатами приблизительного расчета.

Отсюда можно сделать вывод, что нет смысла искать в интернете, какой там коэффициент для вашего региона, а можно просто взять за основу дедовский метод. При этом и первый, и второй расчет электрокотла для отопления дома будут весьма приблизительны, так как нужно учитывать не только площадь помещения. На практике можно столкнуться с ситуацией, когда нагреватель достаточно мощный (исходя из вышеуказанных расчетов), а в доме все равно холодно.

Легко и быстро организовать обогрев гаража в зимнее время не составляет труда, пара пустяков.

Особенно интересно как сделать альтернативное отопление гаража своими руками. Все .

Зависимость мощности электрических котлов от теплопотерь

Мы уже выяснили, что расчет электрокотла для отопления дома, исходя только из квадратуры помещения, по меньшей мере, не отображает реальной картины. Часто задаваемый вопрос о том, сколько метров отопит нагреватель определенной мощности, не имеет правильного ответа. Все дело в теплопотерях. Если у вас панорамные окна во всех направлениях, неутепленные стены и перекрытия, щели в окна и дверях, то греть вы будете в основном не дом, а улицу. Она большая, сколько не топи, теплее не станет.

Котел должен отдавать тепла не меньше, чем помещение его теряет. Иными словами, если теплопотери дома составляют 15 киловатт, то нагреватель должен быть не меньше этого значения, чтобы поддерживать комфортную температуру. При этом теплопотери происходят беспрерывно, получается, что и котел должен работать постоянно, а это недопустимо. Нагреватель должен делать перерывы, поэтому рассчитать мощность электрического котла отопления нужно с хорошим запасом. В противном случае агрегат, работая в авральном режиме, достаточно скоро может дать сбой, в отопительный период это чревато серьезными последствиями.

Получается, что пред тем как рассчитать мощность электрокотла отопления, нужно определить теплопотери помещения. Для этого необходимо знать:

  • материал стен и перекрытий;
  • толщину и площадь стен и перекрытий;
  • количество камер и площадь окон.

Всё это нужно чтобы определить теплосопротивление дома. У каждого материала своя теплопроводность. Ее можно узнать из таблицы.

В таблице указаны значение теплопроводности самых распространенных материалов.

Чтобы вычислить теплосопротивление стен и перекрытий нужно поделить их толщину на коэффициент теплопроводности материалов, из которых они изготовлены. Расчёт делается для каждого материала отдельно. Затем все значения суммируются.

Когда мы узнали теплосопротивление дома, можно переходить к подсчёту общих теплопотерь. Для этого квадратуру дома умножаем на дельту температур в помещении и за окном, а результат делим на теплосопротивление. Дельту температур нужно брать для самого холодного периода. Расчет мощности электрокотла для отопления дома с учетом, в первую очередь, теплопотерь будет самым точным. Поэтому не ленитесь и пользуйтесь именно этим способом. Да, он более хлопотный, да нужно много чего учитывать, но зато результат будет адекватным, вы правильно сделаете расчет.

Сегодня отопление гаража электричеством также актуально, как и обогрев электроприборами частного дома.

Внимание! Консервативно настроенные граждане, кирпичная печь для отопления гаража — это ваш вариант. .

Зависимость мощности электрических котлов от теплоносителя

Так выглядит теплоаккумулятор для системы обогрева.

Еще один фактор, который влияет на то, какими должны быть электрические отопительные котлы (их мощность) – это теплоноситель. Что именно может повлиять на результат:

  • объём теплоносителя;
  • какая жидкость для системы отопления применяется в данном случае;
  • схема разводки труб отопления.

Последний фактор – совсем косвенный, но, тем не менее, он также на несколько процентов меняет картину в целом, а вот объём теплоносителя очень даже существенный показатель. Допустим, вы правильным путем (смотрите какой правильный выше) сделали расчет мощности котла, но при этом не учли, что в вашем контуре установлен теплоаккумулятор. Этот резервуар вмещает много жидкости. В каждом случае его объём считается отдельно, но в среднем не меньше 300 литров.

Чтобы нагреть один литр воды на один градус за час потребуется 0,001 киловатт энергии.

Котел греет воду до установленного вами уровня, возьмём 40 градусов. При первом запуске температура теплоносителя будет минимальной, около 20 градусов. Когда он нагреет теплоноситель до той степени, что обратка достигнет выставленных сорока градусов, агрегат отключится. Либо же внешний термодатчик отключит нагреватель, когда в помещении будет достигнута заданная температура, все зависит от модели и «мозгов» аппарата.

К примеру, в вашей системе помимо теплоаккумулятора циркулирует еще 100 литров теплоносителя, в сумме 400 литров. Для того чтобы нагреть такой объём воды котлу потребуется 9,6 кВт энергии, с учетом что КПД нагревателя будет 97%. Время нагрева зависит от мощности, если ее недостаточно, то котел вообще не будет выключаться. Помимо этого при расчете мощности электрических котлов отопления надо брать во внимание характеристики теплоносителя. Так, например, у антифриза теплопроводность на 15% ниже, чем у воды.

Итоги

Расчет мощности котла должен осуществляться с учетом теплопотерь. Топорный метод, взять на глаз 100 ватт на один метр площади, не выдерживает никакой критики. Помимо этого после расчета, но перед покупкой, нужно проверить сможет ли выбранный агрегат справиться с объёмом теплоносителя в системе и сколько времени ему потребуется для этого. Конечно, хотелось бы как-нибудь попроще сделать все вычисления, но увы, в этом деле нужна точность и ориентированность на определенные условия.

Сколько потребляет электроэнергии электрический котел: правила расчетов

Использование электричества в качестве источника энергии для отопления загородного дома привлекательно по многим причинам: легкодоступность, распространенность, экологичность. Вместе с тем самым главным препятствием использования электрических котлов остаются довольно высокие тарифы.

По этой причине целесообразность применения зависит в первую очередь от того, сколько потребляет электроэнергии электрический котел.

Два способа проведения расчетов

Можно выделить две основные методики расчета необходимой мощности электрического котла. Первая основана на отапливаемой площади, вторая на расчете теплопотерь через ограждающие конструкции.

Расчет по первому варианту очень грубый, основан на единственном показателе — удельной мощности. Удельная мощность приведена в справочниках и зависит от региона.

Галерея изображений Фото из Преимущества установки электрического котла Веские плюсы эксплуатации электрического агрегата Недостатки систем отопления с электрокотлом Подбор электрического котла достаточной мощности

Расчет по второму варианту сложнее, но учитывает множество индивидуальных показателей конкретного здания. Полный теплотехнический расчет здания — задача достаточно сложная и кропотливая. Далее будет рассмотрен упрощенный расчет, тем не менее обладающий необходимой точностью.

Независимо от методики расчета, количество и качество собранных исходных данных напрямую влияют на правильную оценку требуемой мощности электрокотла.

При заниженной мощности оборудование будет постоянно работать с максимальной нагрузкой, не обеспечивая нужного комфорта проживания. При завышенной мощности – неоправданно большое потребление электроэнергии высокая стоимость отопительного оборудования.

В отличие от других видов топлива, электроэнергия — это экологически безопасный, довольно чистый и простой вариант, но привязанный к наличию бесперебойно действующей электросети в регионе

Сбор исходных данных для расчета

Для проведения расчетов понадобятся следующие сведения о здании:

S – площадь отапливаемого помещения.

Wуд – удельная мощность. Этот показатель показывает сколько необходимо тепловой энергии на 1 м2 в 1 час. Зависит от местных природных условий, можно принять следующие значения:

  • для центральной части России: 120 – 150 Вт/м2;
  • для южных регионов: 70-90 Вт/м2;
  • для северных регионов: 150-200 Вт/м2.

Wуд – величина теоретическая применяется в основном для очень грубых расчетов, потому что не отражает реальных теплопотерь здания. Не учитывает площадь остекления, количество дверей, материал наружных стен, высоту потолков.

Точный теплотехнический расчет производится при помощи специализированных программ с учетом множества факторов. Для наших целей такой расчет не нужен, вполне можно обойтись обсчетом теплопотерь наружных ограждающих конструкций.

Величины, которые нужно задействовать в расчетах:

R – сопротивление теплопередачи или коэффициент теплосопротивления. Это отношение разности температур по краям ограждающей конструкции к тепловому потоку, проходящему через эту конструкцию. Имеет размерность м2×⁰С/Вт.

На самом деле все просто – R выражает способность материала задерживать тепло.

Q – величина, показывающая количество теплового потока проходящего через 1 м2 поверхности при разности температуры в 1⁰С за 1час. То есть показывает сколько теряет тепловой энергии 1 м2 ограждающей конструкции в час при перепаде температуры в 1 градус. Имеет размерность Вт/м2×ч. Для приведенных здесь расчетов разницы между кельвинами и градусами по Цельсию нет, поскольку важна не абсолютная температура, а только разница.

Qобщ – количество теплового потока проходящее через площадь S ограждающей конструкции в час. Имеет размерность Вт/ч.

P – мощность отопительного котла. Вычисляется как требуемая максимальная величина мощности отопительного оборудования при максимальной разнице температуры наружного и внутреннего воздуха. Другими словами достаточная мощность котла для обогрева здания в самый холодный сезон. Имеет размерность Вт/ч.

КПД – коэффициент полезного действия отопительного котла, безразмерная величина показывающая отношение полученной энергии к затраченной энергии. В документации на оборудование обычно приводится в процентах от 100 например 99%. В расчетах применяется величина от 1 т.е. 0,99.

∆T – показывает разность температуры с двух сторон ограждающей конструкции. Чтобы было понятнее, как правильно вычисляется разница посмотрите пример. Если снаружи: -30С, а внутри +22С⁰, то

∆T = 22-(-30)=52С⁰

Или тоже, но в кельвинах:

∆T = 293 – 243 = 52К

То есть разница всегда будет одинаковой для градусов и кельвинов, поэтому для расчетов справочные данные в кельвинах могут применяться без поправок.

d – толщина ограждающей конструкции в метрах.

k – коэффициент теплопроводности материала ограждающей конструкции, который берется из справочников или СНиП II-3-79 «Строительная теплотехника» (СНиП — строительные нормы и правила). Имеет размерность Вт/м×K или Вт/м×⁰С.

Следующий список формул показывает взаимосвязь величин:

  • R = d / k
  • R= ∆T/Q
  • Q = ∆T/R
  • Qобщ = Q × S
  • P = Qобщ / КПД

Для многослойных конструкций сопротивление теплопередаче R вычисляется для каждой конструкции отдельно и затем суммируется.

Иногда расчет многослойных конструкций может быть слишком громоздким, например при расчете теплопотерь оконного стеклопакета.

Что необходимо учесть при расчете сопротивления теплопередачи для окон:

  • толщину стекла;
  • количество стекол и воздушных зазоров между ними;
  • вид газа между стеклами: инертный или воздух;
  • наличие теплоизоляционного покрытия оконного стекла.

Однако можно найти готовые значения для всей конструкции либо у производителя, либо в справочнике, в конце этой статьи приведена таблица для стеклопакетов распространенной конструкции.

Расчет теплопотерь пола цокольного этажа

Отдельно необходимо остановится на расчете теплопотерь через пол здания, так как грунт оказывает значительное сопротивление теплопередаче.

При расчетах теплопотерь цокольного этажа нужно принимать во внимание заглубление в грунт. Если дом стоит на уровне земли, то заглубление принимается равным 0. По общепринятой методике площадь пола делится на 4 зоны.

  • 1 зона — отступается 2м от наружной стены к центру пола по периметру. В случае заглубления здания, отступается от уровня земли до уровня пола по вертикальной стене. Если стена заглублена в грунт на 2м, то зона 1 будет полностью на стене.
  • 2 зона – отступается по 2м по периметру к центру от границы 1 зоны.
  • 3 зона – отступается по 2м по периметру к центру от границы 2 зоны.
  • 4 зона – оставшийся пол.

Для каждой зоны из сложившейся практики установлены свои R:

  • R1 = 2,1 м2×⁰С/Вт;
  • R2 = 4,3 м2×⁰С/Вт;
  • R3 = 8,6 м2×⁰С/Вт;
  • R4 = 14,2 м2×⁰С/Вт.

Приведенные значения R справедливы для полов без покрытия. В случае утепления, каждое R увеличивается на R утеплителя.

Дополнительно для полов уложенных на лаги R умножается на коэффициент 1,18.

Зона 1 имеет ширину 2 метра. Если дом заглублен, то нужно взять высоту стен в грунте, отнять от 2 метров, а остаток перенести на пол

Варианты расчета мощности электрического котла

Теперь можно приступить к расчетам. Формула, которая может служить для приблизительной оценки мощности электрического котла:

W=Wуд × S

Задача: рассчитать необходимую мощность котла в г. Москва, отапливаемая площадь 150м².

При производстве расчетов учитываем, что Москва относится к центральному региону, т.е. Wуд можно принять равным 130 Вт/м2.

Wуд = 130 × 150 = 19500Вт/ч или 19,5кВт/ч

Эта цифра настолько неточная, что не требует учета КПД отопительного оборудования.

Теперь определим теплопотери через 15м2 площади потолка, утепленного минеральной ватой. Толщина слоя теплоизоляции 150мм, температура наружного воздуха -30⁰С, внутри здания +22⁰С за 3 часа.

Решение: по таблице находим коэффициент теплопроводности минеральной ваты, k=0,036 Вт/м×⁰С. Толщину d необходимо брать в метрах. Порядок расчета такой:

R = 0,15 / 0,036 = 4,167 м2×°С/Вт

∆T= 22 — (-30) = 52ºС

Q= 52 / 4,167 = 12,48 Вт/м2×ч

Qобщ = 12,48 × 15 = 187 Вт/ч.

Вычислили, что потери тепла через потолок составят в нашем примере 187 * 3 = 561Вт.

Допущения и упрощения при расчете

Для наших целей вполне допускается упростить расчеты, рассчитывая теплопотери только наружных конструкций: стен и потолков, не обращая внимание на внутренние перегородки и двери.

Кроме того, можно обойтись без расчета потерь тепла на вентиляцию и канализацию. Не будем принимать в расчет инфильтрацию и ветровую нагрузку. Зависимость расположения здания по сторонам света и количество получаемой солнечной радиации.

Из общих соображений можно сделать один вывод. Чем больше объем здания, тем меньше приходится теплопотерь на 1 м2. Объяснить это легко, так как площадь стен возрастает квадратично, а объем в кубе. Шар имеет наименьшие теплопотери.

В ограждающих конструкциях учитываются только замкнутые воздушные слои. Если у Вашего дома вентилируемый фасад, то такой воздушный слой считается не замкнутым, в расчет не берется. Не берутся все слои, которые следуют перед незамкнутым воздушным слоем: фасадная плитка или кассеты.

Замкнутые воздушные слои, например, в стеклопакетах учитываются.

Все стены дома являются наружными. Чердак не отапливаемый, теплосопротивление кровельных материалов в расчет не принимается

Пример расчета теплопотерь коттеджа

После теоретической части можно приступить к практической. Для примера рассчитаем дом:

  • размеры наружных стен: 9х10м;
  • высота: 3м;
  • окно со стеклопакетом 1,5×1,5м: 4 шт;
  • дверь дубовая 2,1×0,9м, толщина 50мм;
  • полы сосновые 28мм, поверх экструдированного пенопласта толщиной 30мм, уложены на лаги;
  • потолок ГКЛ 9мм, поверх минеральной ваты толщиной 150мм;
  • материал стен: кладка 2 силикатных кирпича, утепление минеральной ватой 50мм;
  • самый холодный период – 30⁰С, расчетная температура внутри здания 20⁰С.

Произведем подготовительные расчеты необходимых площадей. При расчете зон на полу, принимаем нулевое заглубление стен. Доска пола уложена лаги.

  • окна – 9м2;
  • дверь – 1,9м2;
  • стены, за минусом окон и двери – 103,1м2;
  • потолок — 90м2;
  • площади зон пола: S1 = 60м2, S2 = 18м2, S3 = 10 м2, S4 = 2м2;
  • ΔT = 50⁰C.

Далее по справочникам или по таблицам приведенным в конце этой главы, выбираем необходимые значения коэффициента теплопроводности для каждого материала. Для сосновых досок коэффициент нужно брать вдоль волокон.

Весь расчет достаточно прост:

Шаг №1: Расчет потерь тепла через несущие стеновые конструкции включает три действия.

  1. Рассчитываем коэффициент теплопотерь стен кирпичной кладки.

Rкир = d / k = 0,51 / 0,7 = 0,73 м2×°С/Вт.

  1. То же для утеплителя стен.

Rут = d / k = 0,05 / 0,043 = 1,16 м2×°С/Вт.

  1. Теплопотери 1 м2 наружных стен.

Q = ΔT/(Rкир + Rут) = 50 / (0,73 + 1,16) = 26,46 м2×°С/Вт

В итоге общие теплопотери стен составят:

Qст = Q×S = 26,46 × 103,1 = 2728 Вт/ч.

Шаг №2: Вычисления потерь тепловой энергии через окна:

Qокн = 9 × 50 / 0,32 = 1406Вт/ч.

Шаг № 3: Подсчет утечек тепловой энергии через дубовую дверь.

Qдв = 1,9 × 50 / 0,23 = 413Вт/ч.

Шаг №4: Потери тепла через верхнее перекрытие — потолок.

Qпот = 90 × 50 / (0,06 + 4,17) = 1064Вт/ч.

Шаг №5: Рассчитываем Rут для пола так же в несколько действий.

  1. Rут= 0,16 + 0,83 = 0,99 м2×°С/Вт.
  2. Затем прибавляем Rут к каждой зоне.

R1 = 3,09 м2×°С/Вт; R2 = 5,29 м2×°С/Вт;

R3 = 9,59 м2×°С/Вт; R4 = 15,19 м2×°С/Вт.

Шаг №6: Так как пол уложен на лаги умножаем на коэффициент 1,18.

R1 = 3,64 м2×°С/Вт; R2 = 6,24 м2×°С/Вт;

R3 = 11,32 м2×°С/Вт; R4 = 17,92 м2×°С/Вт.

Шаг №7: Вычислим Q для каждой зоны:

Q1 = 60 × 50 / 3,64 = 824Вт/ч;

Q2 = 18 × 50 / 6,24 = 144Вт/ч;

Q3 = 10 × 50 / 11,32 = 44Вт/ч;

Q4 = 2 × 50 / 17,92 = 6Вт/ч.

Шаг №8: Теперь можно вычислить Q для всего пола.

Qпол = 824 + 144 + 44 + 6 = 1018Вт/ч.

Шаг №9: В результате выполненных нами вычислений можно обозначить сумму общих потерь тепла.

Qобщ = 2728 + 1406 + 413 + 1064 + 1018 = 6629Вт/ч.

В расчет не вошли теплопотери связанные с канализацией и вентиляцией. Чтобы не усложнять сверх меры просто добавим на перечисленные утечки 5%.

Разумеется необходим запас, минимум 10%.

Таким образом окончательная цифра теплопотерь приведенного в качестве примера дома составит:

Qобщ = 6629 × 1,15 = 7623Вт/ч.

Qобщ показывает максимальные теплопотери дома при разнице температуры наружного и внутреннего воздуха 50⁰С.

Если посчитать по первому упрощенному варианту через Wуд то:

Wуд = 130 × 90 = 11700Вт/ч.

Ясно, что второй вариант расчета пусть и значительнее сложнее, но дает более реальную цифру для построек с утеплением. Первый вариант позволяет получить обобщенное значение потерь тепла для строений с низкой степенью теплоизоляции или вовсе без нее.

В первом случае котлу придется каждый час по полной возобновлять потери тепловой энергии, происходящие через проемы, перекрытия, стены без изоляции. Во втором случае топить до достижения комфортного значения температуры надо только один раз. Затем котлу надо будет только восстанавливать теплопотери, величина которых существенно ниже первого варианта.

Таблица 1:

В таблице приведены коэффициенты теплопроводности для распространенных строительных материалов (+)

Таблица 2:

При расчете толщины кладки учитывается толщина шва 10мм. За счет цементных швов теплопроводность кладки несколько выше чем отдельного кирпича (+)

Таблица 3:

В таблице приведены значения коэффициента теплопроводности для различных минераловатных плит. Для утепления фасадов применяется жесткая плита

Таблица 4:

Обозначения в таблице: Ar – заполнение стеклопакетов инертным газом, К – наружное стекло имеет теплозащитное покрытие, толщина стекла 4мм остальные цифры обозначают промежуток между стеклами (+)

7,6 кВт/ч – это расчетная необходимая максимальная мощность, которая расходуется на отопление хорошо утепленной постройки. Однако электрокотлам для работы тоже нужен некоторый заряд для собственного питания.

Расчет затрат на электроэнергию

Если упростить техническую сущность котла отопления, то назвать его можно обычным преобразователем электрической энергии в ее тепловой аналог. Выполняя работу по преобразованию, он тоже потребляет некоторое количество энергии. Т.е. котел получает полную единицу электроэнергии, а на отопление поступает только 0,98 ее часть.

Для получения точной цифры расхода электроэнергии исследуемым электрическим котлом отопления надо его мощность (номинальную в первом случае и расчетную во втором) разделить на заявленное производителем значение КПД. В среднем КПД подобного оборудования составляет 98%. В результате величина энергопотребления составит, к примеру для расчетного варианта:

7,6 / 0,98 = 7,8 кВт/ч.

Остается помножить значение на местный тариф. Затем вычислить общую сумму затрат на электроотопление и заняться поиском путей их сокращения. Например, купить двухтарифный счетчик, позволяющий частично производить оплату по более низким «ночным» тарифам. Можно включить в отопительный контур термоаккумклятор, чтобы запасаться дешевой энергией ночью, а расходовать ее днем.

Количество требующих отопления дней

Теперь, когда вы освоили методику расчета будущих теплопотерь, легко сможете оценить затраты на отопление в течение всего отопительного периода.

По СНиП 23-01-99 «Строительная климатология» в столбцах 13 и 14 находим для Москвы продолжительность периода со средней температурой ниже 10⁰С. Для Москвы такой период длится 231 день и имеет среднюю температуру -2,2⁰С. Чтобы вычислить Qобщ для ΔT=22,2⁰С, необязательно производить весь расчет заново. Достаточно вывести Qобщ на 1⁰С:

Qобщ = 7623 / 50 = 152,46 Вт/ч

Соответственно для ΔT= 22,2⁰С:

Qобщ = 152,46 × 22,2 = 3385Вт/ч

Для нахождения потребленной электроэнергии умножим на отопительный период:

Q = 3385 × 231 × 24 × 1,05 = 18766440Вт = 18766кВт

Приведенный расчет интересен еще и тем, что позволяет провести анализ всей конструкции дома с точки зрения эффективности применения утепления.

Выводы и полезное видео по теме

Как избежать теплопотерь через фундамент:

Как рассчитать теплопотери онлайн:

Применение электрокотлов в качестве основного отопительного оборудования очень сильно ограничено возможностями электросетей и стоимостью электроэнергии. Однако в качестве дополнительного, например к твердотопливному котлу, могут быть весьма эффективны и полезны. Способны значительно сократить время на прогревание системы отопления или использоваться в качестве основного котла при не очень низких температурах.


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *