Солнечные батареи с высоким КПД

20 Вт поликристаллическая солнечная панель

Блог Магазины Китая RSS блога Подписка

  • Магазины Китая
  • BANGGOOD.COM
  • Зарядные устройства
  • Товары для дома и дачи
  • Пункт №18
  • Цена: $ 59.54 + $3.13 доставка в РФ

Здравствуйте. Предлагаю обзор 20 ваттной поликристаллической солнечной панели.
В обзоре немного теории, советы по установке, снятие основных характеристик при разных уровнях освещённости.
Если коротко: панель работает и выдаёт заявленную мощность.
В общем прошу…

Немного теории:

Солнечная панель (Солнечная батарея) — несколько объединённых фотоэлектрических преобразователей (фотоэлементов) — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток.
В настоящее время из всех типов солнечных батарей, наибольшее распространение получили солнечные панели: монокристаллические и поликристаллические, последние из которых часто также называют «мультикристаллическими солнечными панелями».
Материалом для изготовления монокристаллических солнечных панелей, является сверх чистый кремний, использующийся также для производства полупроводниковых приборов в радиоэлектронике, и хорошо освоенный современной промышленностью. Стержни кремниевого монокристалла, медленно растут» и вытягиваются из кремниевого расплава, а далее разрезаются на части, с их толщиной 0,2-0,4 мм и уже используются после их последующей обработки, для изготовления фотоэлектрических элементов, входящих в состав солнечных панелей.
Когда происходит медленное охлаждение кремниевого расплава, то из него получается поликристаллический кремний, использующийся для изготовления поликристаллических солнечных панелей. В этом случае операция вытягивания кристаллов кремния из расплава полностью опускается, а сам процесс менее трудоемок, нежели при изготовлении монокристаллического кремния, а соответственно и такие солнечные батареи дешевле.
Основные отличия «моно» и «поли» кристаллических типов солнечных батарей:
— Эффективность преобразования солнечной энергии в электрическую. Монокристаллические панели при их серийном производстве – имеют эффективность максимум до 22%, а используемые в космических технологиях – даже до 38%. У серийно выпускаемых поликристаллических панелей – эффективность составляет по максимуму – 18%.
— Внешний вид. У монокристаллических элементов солнечных панелей – углы скруглены. Округленность их форм связана здесь с тем, что монокристаллический кремний, при его производстве получают в цилиндрических заготовках. Поликристаллические элементы солнечных модулей имеют квадратную форму, поскольку их заготовки при производстве – также квадратной формы.
— Цена. В пересчёте на единицу мощности, монокристаллические солнечные панели незначительно дороже (примерно на 10%), чем солнечные панели из поликристаллического кремния.
В итоге можно сказать, что выгоднее использовать поликристаллические солнечные модули – которые при той же мощности, будут немного больше по площади, нежели модули монокристаллические, но зато немного их дешевле.
Думаю теории достаточно, можно переходить к обзору.

Герой обзора:

Панель пришла в обычном сером пакете (фотографировать не стал), внутри пакета сама панель завёрнутая в несколько слоёв вспененного полиэтилена. Но естественно этого оказалось недостаточно и углы панели слегка пострадали. Но к моей радости сама панель не оказалась повреждённой.Размер панели: 47х35х2 см. Вес около 2 кг.
Конструктивно сама панель вставлена в рамку из алюминиевого профиля и проклеена белым силиконовым герметиком. На тыльной стороне расположена монтажная коробка, в которой к панели припаян 3-х метровый кабель. Также в этой коробке установлен диод Шоттки. Он необходим при объединении нескольких панелей в батарею для предотвращения обратного тока при неравномерной засветке. На другом конце кабеля смонтированы зажимы типа «крокодил». Основные параметры панели находятся на наклейке чуть ниже монтажной коробки.
Распаковав панель я решил сразу проверить её, для чего подключил к «крокодилам» 12-ти вольтовое светодиодное кольцо. Оно засветилось. При чём даже в полумраке при задёрнутых занавесках и шторах (освещённость 42,5 люкса):

Установка (монтаж) солнечной панели:

Солнечные батареи следует размещать в наиболее освещенном месте, таким образом, чтобы деревья и здания не затеняли их. Самым оптимальным местом является крыша здания или специальная опора, чуть хуже — стена.
При установке панелей, необходимо соблюдать угол наклона и азимут. Для жителей северного полушария оптимальный азимут — 180 градусов (строго на юг). Для южного полушария, естественно, наоборот. Долгота места установки не имеет значения. От широты зависит угол наклона, т.е. чем ближе к экватору, тем угол наклона меньше относительно горизонта, ну а чем ближе к полюсам, тем угол больше. Проще всего этот угол посчитать с помощью онлайн калькулятора. Для моего места жительства этот угол равен 44 градусам. Установить я решил обозреваемую панель на внешний блок кондиционера, смонтированный на юго-западной стене многоквартирного дома. Место, конечно, не идеальное, но лучшего я не нашёл.

Тестирование:

Характеристики панели я снимал в 3 временных промежутках: утро, когда панель находится в тени дома, пасмурный день и солнечный день — идеальные условия. В качестве нагрузки я использовал советский проволочный переменный резистор на 100 Ом и дополнительно постоянные резисторы от 50 Ом до 300 Ом. В последнем тесте на максимальной мощности с переменного резистора шёл дым 🙂
Утро:
Пасмурный день:
Солнечный день:

Практическое применение:

Для практического использования, самой солнечной панели чаще всего недостаточно, т.к. выходной ток очень сильно зависит от освещённости. В тёмное время суток солнечная панель практически не вырабатывает электроэнергию. Поэтому солнечную панель необходимо дополнить аккумулятором. В самом простом варианте можно обозреваемую панель подключить непосредственно к автомобильному 12 вольтовому аккумулятору, и к этому же аккумулятору подключить и 12 вольтовую нагрузку. Но в этом случае необходимо вручную контролировать напряжение на аккумуляторной батарее, чтобы не допустить её перезаряд, либо глубокий разряд. Также желательно обеспечивать нагрузку солнечной панели в точке максимальной мощности. Для автоматизации этого процесса применяются специальные контроллеры солнечных батарей. Контроллеры бывают 2 видов: MPPT или PWM. Что это такое и каковы их отличия, описывать здесь, думаю, не стоит. Мне уже идут по почте 2 контроллера, вот как придут, сделаю обзор, и расскажу обо всём в подробностях. Это и будет продолжением данного обзора.

Итог:

Обозреваемая солнечная панель вполне работоспособна и выдаёт заявленную мощность с учётом неидеальных условий установки.
Надеюсь мой обзор будет полезен, спасибо, что дочитали 🙂
Удачи!
Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта. Планирую купить +33 Добавить в избранное Обзор понравился +48 +79

Солнечные батареи с рекордным КПД

Электрик Инфо — мир электричества. Электрика в квартире и доме, электроснабжение, электромонтаж, ремонт, освещение, домашняя автоматизация, практическая электроника. Статьи про устройство и ремонт домашней электропроводки, розетки и выключатели, провода и кабели, источники света, интересные факты и многое другое для начинающих электриков и домашних мастеров. Кейсы, схемы, примеры и технические решения, обзоры интересных электротехнических новинок.

Сайт электрика

Избранные статьи » Интересные электротехнические новинки

Рекордсменом по КПД среди солнечных батарей, из числа так или иначе доступных на рынке сегодня, являются, разработанные Институтом гелиоэнергетических систем Общества имени Фраунгофера в Германии, солнечные батареи на базе многослойных фотоэлементов. Начиная с 2005 года, их коммерческим внедрением занимается компания Soitec.

Размер самих фотоэлементов не превышает 4 миллиметра, а фокусировка солнечного света на них достигается путем применения вспомогательных концентрирующих линз, благодаря которым насыщенный солнечный свет преобразуется в электричество с КПД достигающим 47%.

Батарея содержит четыре p-n перехода, чтобы четыре различные звена фотоэлемента могли эффективно принимать и преобразовывать излучение с конкретной длиной волны, из солнечного света, сконцентрированного в 297,3 раза, в диапазоне длин волн от инфракрасного до ультрафиолетового.

Исследователи под руководством Франка Димирота изначально поставили перед собой задачу вырастить многослойный кристалл, и решение было найдено, — они срастили подложки для выращивания, и в результате был получен кристалл с различными полупроводниковыми слоями, с четырьмя фотоэлектрическими подъячейками.

Процесс выращивания получился сложнее, чем это имеет место в традиционном производстве кремниевых батарей, однако производительность новых батарей удвоилась. К тому же расходы на создание системы с концентратором здесь ниже, чем при создании обычных солнечных батарей.

Многослойные фотоэлементы давно используются на космических аппаратах, но теперь на их основе запущены и солнечные станции уже в 18 странах. Это становится возможным благодаря совершенствованию и удешевлению технологии. В итоге, количество стран, снабженных новыми солнечными станциями, будет расти, и налицо тенденция к конкуренции на рынке промышленных солнечных батарей.

На втором месте – солнечные батареи на базе трехслойных фотоэлементов Sharp, КПД которых достиг 44,4%. Фосфид индия-галлия – первый слой фотоэлемента, арсенид галлия – второй, арсенид индия-галлия – третий слой. Три слоя разделены диэлектриком, который служит для достижения туннельного эффекта.

Концентрация света на фотоэлемент достигается благодаря линзе Френеля, как и у немецких разработчиков, — свет солнца концентрируется в 302 раза, и преобразуется трехслойным полупроводниковым фотоэлементом.

Научные исследования по развитию этой технологии непрерывно велись Sharp, начиная с 2003 года при поддержке NEDO – японской организации общественного управления, содействующей научным исследованиям и развитию, а также распространению промышленных, энергетических и экологических технологий. К 2013 году Sharp был достигнут рекорд в 44,4%.

За два года до Sharp, в 2011 году, американская компания Solar Junction уже выпустила аналогичные батареи, но с КПД 43,5%, элементы которых обладали размером 5 на 5 мм, и фокусировка также производилась линзами, концентрируя свет солнца в 400 раз. Фотоэлементы были трехпереходными на основе германия, и группа планировала даже создать пяти и шестипереходные фотоэлементы, чтобы лучше захватить спектр. Исследования ведутся компанией и по сей день.

Таким образом, максимально рекордным КПД обладают солнечные батареи, выполненные в сочетании с концентраторами, которые, как мы видим, производят и в Европе, и в Азии, и в Америке. Но эти батареи в основном изготавливаются для постройки наземных солнечных электростанций крупных масштабов и для эффективного электроснабжения космических аппаратов.

Недавно был поставлен рекорд в сфере обычных потребительских солнечных панелей, которые доступны большинству желающих снабдить ими, например, крышу дома.

В середине осени 2015 года компания Илона Маска «SolarCity» представила наиболее эффективные потребительские солнечные панели, КПД которых превышает 22%.

Этот показатель подтвердили замеры, проведенные лабораторией Renewable Energy Test Center. Завод в Баффало уже ставит план производства на каждый день – от 9 до 10 тысяч солнечных панелей, точные характеристики которых пока не сообщаются. Компания уже планирует снабжать своими батареями не менее 200000 домов ежегодно.

Дело в том, что оптимизированный технологический процесс позволил предприятию значительно снизить стоимость производства, при этом повысив КПД в 2 раза по сравнению с широко распространенными потребительскими кремниевыми солнечными панелями. Маск уверен, что именно его солнечные панели будут пользоваться наибольшей популярностью у домовладельцев в ближайшем будущем.

Смотрите также по этой теме: 5 необычных солнечных батарей будущего

Андрей Повный


Поделитесь этой статьей с друзьями:

Вступайте в наши группы в социальных сетях:

Смотрите также на Электрик Инфо

:

  • Полимерные солнечные батареи
  • Солнечные батареи из перовскита
  • Сверхтонкие многослойные солнечные элементы на основе наноструктурированных …
  • Солнечная черепица Tesla
  • Двусторонние солнечные элементы

  • Электрика дома | Электрообзоры | Энергосбережение
    Секреты электрика | Источники света | Делимся опытом
    Домашняя автоматика | Электрика для начинающих
    Практическая электроника | Электротехнические новинки

    Copyright © 2009-2019 electrik.info Андрей Повный (об авторе) Вся информация на сайте предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет. Перепечатка материалов сайта запрещена.

    Методы производства солнечных элементов


    г. Химки, ул. Молодежная, стр. 15А, офис 215
    +7 499 390 61 21 (Москва)
    +7 925 530 60 10 (WhatsApp, Viber)
    с 10.00 до 19.00
    info@b-eco.ru

    Корзина покупок

    Товаров: 0 (0 руб.) Ничего не куплено! Акции 46 200 руб.
    33 900 руб. 55 400 руб.
    49 080 руб. 87 650 руб.
    58 800 руб. 36 630 руб.
    26 000 руб. 23 320 руб.
    18 700 руб. Мы вконтакте

    Более 85% солнечных батарей производятся на основе моно и поли кремния. Технология их производства достаточно трудная, длительная и энергоемкая. Но обо всем по порядку.

    Основные этапы изготовления солнечных монокристаллических элементов:

    1. Получение «солнечного» кремния.

      В качестве сырья используется кварцевый песок с высоким массовым содержанием диоксида кремния (SiO2). Он проходит многоступенчатую очистку, чтобы избавиться от кислорода. Происходит путем высокотемпературного плавления и синтеза с добавлением химических веществ.

    2. Выращивание кристаллов.

      Очищенный кремний представляет собой просто разрозненные куски. Для упорядочивания структуры и выращиваются кристаллы по методу Чохральского. Происходит это так: куски кремния помещаются в тигель, где раскаляются и плавятся. В расплав опускается затравка – так сказать, образец будущего кристалла. Атомы, располагаются в четкую структуру, нарастают на затравку слой за слоем. Процесс наращивания длительный, но в результате образуется большой, красивый, а главное однородный кристалл.

    3. Обработка.

      Этот этап начинается с измерения, калибровки и обработки монокристалла для придания нужной формы. Дело в том, что при выходе из тигля в поперечном сечении он имеет круглую форму, что не очень удобно для дальнейшей работы. Поэтому ему придается псевдо квадратная форма. Далее обработанный монокристалл стальными нитями в карбид — кремниевой суспензии или алмазно — импрегнированной проволокой режется на пластинки толщиной 250-300 мкм. Они очищаются, проверяются на брак и количество вырабатываемой энергии.

    4. Создание фотоэлектрического элемента.

      Чтобы кремний мог вырабатывать энергию, в него добавляют бор (B) и фосфор (P). Благодаря этому слой фосфора получает свободные электроны (сторона n-типа), сторона бора – отсутствие электронов, т.е. дырки (сторона p-типа). По причине этого между фосфором и бором появляется p-n переход. Когда свет будет падать на ячейку, из атомной решетки будут выбиваться дырки и электроны, появившись на территории электрического поля, они разбегаются в сторону своего заряда. Если присоединить внешний проводник, они будут стараться компенсировать дырки на другой части пластинки, появится напряжение и ток. Именно для его выработки с обеих сторон пластины припаиваются проводники.

    5. Сборка модулей.

      Пластинки соединяются сначала в цепочки, потом в блоки. Обычно одна пластина имеет 2 Вт мощности и 0,6 В напряжения. Чем больше будет ячеек, тем мощнее получится батарея. Их последовательное подключение дает определенный уровень напряжения, параллельное увеличивает силу образующегося тока. Для достижения необходимых электрических параметров всего модуля последовательно и параллельно соединенные элементы объединяются. Далее ячейки покрывают защитной пленкой, переносят на стекло и помещают в прямоугольную рамку, крепят распределительную коробку. Готовый модуль проходит последнюю проверку – измерение вольт — амперных характеристик. Все, можно использовать!

    Соединение самих солнечных батарей тоже может быть последовательным, параллельным или последовательно-параллельным для получения требуемых силы тока и напряжения.

    Наглядное видео о этапах автоматической сборки, включая: пайку, ламинирование, коммутацию ячеек, установку распределительной коробки, стекла и алюминиевой рамы:

    Производство поликристаллических батарей отличается только выращиванием кристалла. Есть несколько способов производства, но самый популярный сейчас и занимающий 75% всего производства это Сименс — процесс. Суть метода заключается в восстановлении силана и осаждении свободного кремния в результате взаимодействия парогазовой смеси из водорода и силана с поверхностью кремниевых слитков, разогретой до 650-1300°C. Освободившиеся атомы кремния, образовывают кристалл с древовидной (дендритной) структурой.

    Тонкопленочные батареи производятся в основном по технике испарительной фазы. Сырьем для аморфных фотопреобразователей является кремневодород (силан, SinH2n+2). Он напыляется на материал подложки (стекло, керамика, металлические или полимерные ленты и пр.) слоем менее 1 мкм. Водород в составе аморфного кремния (5-20%) меняет его электрофизические свойства и придает ему полупроводниковые качества.

    Производство аморфных преобразователей значительно проще кристаллических: без труда создаются пластины площадью более 1 м при температурах осаждения всего 250-400°C. К тому же их полупроводниковыми свойствами можно управлять, подбирая соединения компонентов пленки для получения требуемых параметров.

    Технология производства солнечных CIGS батарей тоже заключается в напылении полупроводников. Делается это с помощью вакуумных камер и электронных пушек. Медь (Cu), индий (In) или галлий (Ga) напыляются путем последовательного осаждения на подложку из стекла, покрытой молибденом слоем в 1 мкм. Полученная структура обрабатывается парами селена (Se).

    Есть еще один способ изготовления CIGS батарей – метод трафаретной печати или струйного напыления. Основан он на использовании суспензии из частиц металлических оксидов. Ее вязкость позволяет получать как бы чернила для печати. «Бумагой» же могут быть разные материалы: стекло, фольга, пластик.

    Метод трафаретной печати для изготовления тонкопленочных батарей используется только известными «солнечными» производителями. Имеет такие преимущества, как высокий коэффициент использования материалов (от 90%), сравнительная дешевизна оборудования, приличный КПД готового продукта – 14%.

    Производство кристаллов арсенид галлия, может осуществляться, как и монокристаллов кремния, методом Чохральского — горизонтальной или вертикальной направленной кристаллизации. Кристаллы получаются путем вытягивания их вверх от свободной поверхности большого объёма расплава с инициацией начала кристаллизации путём приведения затравочного кристалла. На картинке приведены схемы выращивания.

    Добавить комментарий

    Ваш e-mail не будет опубликован. Обязательные поля помечены *